
北师大版数学五年级上册《点阵中的规律》.ppt
42页小学数学五年级上册(北师大版)小学数学五年级上册(北师大版)点阵中的规律点阵中的规律教学目标1、能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系2、学会分析数之间的规律,并能根据规律填出所缺的数3、能正确地观察和分析图形的变化规律,并能根据规律画出所缺的图形4、在发现和概括规律的过程中,培养数感和空间想象能力古希腊数学家古希腊数学家毕达哥拉斯毕达哥拉斯 阿拉伯数字的发明,使我们记录和计算更加方便,阿拉伯数字的发明,使我们记录和计算更加方便,然而在表现一些数的特征方面,点阵更加直观然而在表现一些数的特征方面,点阵更加直观23002300多多年前,古希腊数学家毕达哥拉斯就非常善于寻找点阵中年前,古希腊数学家毕达哥拉斯就非常善于寻找点阵中的规律,用点阵来研究数的规律,用点阵来研究数14916试着用算式表示出点阵中点的个数试着用算式表示出点阵中点的个数第第2个个 2×2=4第第3个个 3×3=9第第1个个 1×1=14×4=16 第第4个个点阵点阵数数序号序号3214第五个点阵有多少个点?画出此图形。
第五个点阵有多少个点?画出此图形25第五个点阵有多少个点?画出此图形第五个点阵有多少个点?画出此图形5×5=25你有什么发现呢?你有什么发现呢?14916这些点阵图与这些点阵图与对应的数有什对应的数有什么关系?和序么关系?和序号呢?号呢?点阵点阵数数序号序号321452525能用数学算式表示能用数学算式表示2525吗?吗?序号序号点阵中的规律数数形(点阵)形(点阵)①①②②④④③③⑤⑤1491625数形结合数形结合横竖看横竖看1×1= 12×2= 43×3= 94×4= 165×5= 25斜着看斜着看11+2+11+2+3+2+11+2+3+4+3+2+11+2+3+4+5+4+3+2+1拐弯看拐弯看1+3=41+3+5=91+3+5+7=161+3+5+7+9=251思考:这些算式与序号有什么关系?思考:这些算式与序号有什么关系?说说你的发现吧!说说你的发现吧! 横着、竖着横着、竖着观察图形可以发现,随着图观察图形可以发现,随着图形的变化,图中的点数也发生变化第1个形的变化,图中的点数也发生变化第1个点阵由一个点组成,即1点阵由一个点组成,即1××1=11=1, ,第2个第2个点阵由横竖各2个点阵组成,即2点阵由横竖各2个点阵组成,即2××2=42=4, ,第3个点阵由横竖各3个点阵组成,即3第3个点阵由横竖各3个点阵组成,即3××3=93=9, ,第4个点阵由横竖各4个点阵组成,第4个点阵由横竖各4个点阵组成,即4即4××4=164=16第第5个点阵由横竖各个点阵由横竖各5个点个点阵组成,即阵组成,即5×5=25。
规律规律: :相同的数字相乘(相同的数字相乘(N N××N N))交流你的发现吧!交流你的发现吧! 斜着观察发现,划分的斜着观察发现,划分的9 9个图形,随个图形,随着图形的变化,图中的点数也发生变化着图形的变化,图中的点数也发生变化左上图形点的个数是以第一个图形的1左上图形点的个数是以第一个图形的1点开始,从第二个图形往后依次增加点开始,从第二个图形往后依次增加1 1点,第五个图形为点,第五个图形为5 5点,从第五个图形点,从第五个图形向右下又依次减少一个点,到一点,即向右下又依次减少一个点,到一点,即1+2+3+4+5+4+3+2+1=51+2+3+4+5+4+3+2+1=5×5=255=25规律:规律:1+2+3+4+…+N+ …+4+3+2+1=N×N利用你的发现,计算一下:利用你的发现,计算一下:1 1++2 2++3 3++…………++9999++100100++9999++…………++3 3++2 2++1 1=?=?100×100= 10000交流你的发现吧! 拐弯拐弯观察发现,划分的五个图形均是观察发现,划分的五个图形均是正方形(第一个图形除外),前后图形正方形(第一个图形除外),前后图形点的个数是以第一个图形的1点开始,点的个数是以第一个图形的1点开始,第二个图形比第一个图形增加3点,第第二个图形比第一个图形增加3点,第三个图形比第二个图形增加5点,第四三个图形比第二个图形增加5点,第四个图形比第三个图形增加7点,第五个个图形比第三个图形增加7点,第五个图形比第四个图形增加9点,即1图形比第四个图形增加9点,即1+ +33+ +55+ +77+9+9=25=25. .规律:连续奇数的和规律:连续奇数的和数缺形来少直观,数缺形来少直观,形缺数来难入微,形缺数来难入微,数形结合百般好,数形结合百般好,隔离分家万事休。
隔离分家万事休中国现代著名数学家华中国现代著名数学家华 罗罗 庚庚试试一一试试观察下列点阵,并在括号中填上适当的观察下列点阵,并在括号中填上适当的算式1×2))(( ))(( ))(( ))试着画出第试着画出第5个点阵图个点阵图2×33×44×5 ﹙5×6﹚观察点阵的规律,画出下一个图形观察点阵的规律,画出下一个图形试试一一试试1 =11+2 =31+2+ = =你有什么发现?你有什么发现?试试一一试试361+2+3+410练一练练一练按下面的方法划分点阵中的点,并填写按下面的方法划分点阵中的点,并填写算式1=1 4=1+2+19=16=1+2+3+2+11+2+3+4+3+2+11+2+32+3+43+4+54+ + 第第7个点阵有个点阵有 _ 个点个点观察图中观察图中,找一找有什么规律找一找有什么规律2456练一练练一练观察下图中已有的几个图形,按规律画出观察下图中已有的几个图形,按规律画出下一个图形。
下一个图形试试一一试试………正方形点阵正方形点阵三角形点阵三角形点阵正五边形点阵正五边形点阵正六边形点阵正六边形点阵如图:正五边形点阵,它的中心是一个点,算做第如图:正五边形点阵,它的中心是一个点,算做第一层,第二层每边有两个点,第三层每边有三个点一层,第二层每边有两个点,第三层每边有三个点这个五边形点阵第这个五边形点阵第1212层有多少个点?层有多少个点?如图所示如图所示, ,在正六边形周围画出在正六边形周围画出6 6个同样的正六边形个同样的正六边形( (阴阴影部分影部分),),围成第围成第1 1圈圈; ;在第在第1 1圈外面再画出圈外面再画出1212个同样的正个同样的正六边形六边形, ,围成第围成第2 2圈圈; ;…………按这个方法继续画下去按这个方法继续画下去, ,当当画完第画完第6 6圈时圈时, ,图中共有图中共有____________个这样的正六边形个这样的正六边形 如图如图: :每个正方形点阵均被一直线分成两个三角形点每个正方形点阵均被一直线分成两个三角形点阵,根据图中提供的信息,用等式表示第5个正方阵,根据图中提供的信息,用等式表示第5个正方形点阵中的规律是形点阵中的规律是 。
……………………10 + 15 =有一张蓝白相间的方格纸有一张蓝白相间的方格纸,用记号用记号(3,2)表示从表示从左左往往右右数数第第3列列,从从上上往往下下数第数第2行行的这一格的这一格(如图如图),那么那么(19,81)这这一格是一格是______色3,23,2 根据左图根据左图①①的变化,推断出右图的变化,推断出右图②②右边问号处应选几号图?右边问号处应选几号图?①①②② 根据左图根据左图①①的变化,推断出右图的变化,推断出右图②②右边右边问号处应选几号图?问号处应选几号图?①①②②根据前面三幅图的规律,在第四幅图中画出阴影部分根据前面三幅图的规律,在第四幅图中画出阴影部分根据前面三幅图的规律,在第四幅图中画出阴影部分根据前面三幅图的规律,在第四幅图中画出阴影部分根据前面三幅图的规律,在第四幅图中画出阴影部分根据前面三幅图的规律,在第四幅图中画出阴影部分根据前面三幅图的规律,在第四幅图中画出阴影部分根据前面三幅图的规律,在第四幅图中画出阴影部分点击出迷宫如图,照这样摆下去,若摆到第10层,一共需 个正方体, 其中 有 个, 有 个,若摆80层,一共需 个正方体,其中 有 个, 有 个。
10055451×12×23×34×4……n×n一层二层三层四层n层640032403160问题解决问题解决 12431315 714χ 13问题解决问题解决 12431315 7141340观察鱼的排列规律观察鱼的排列规律,在在“??”处画上鱼图处画上鱼图??请从下面六个图中,选一个合适的填在请从下面六个图中,选一个合适的填在“ ?? ”处说说这节课你的收获和疑惑吧!善于观察,勤于思考善于观察,勤于思考数形结合,发现规律数形结合,发现规律作业:作业:1.1.找一找生活中的点阵找一找生活中的点阵2.2.请设计一组有规律、美观的点阵请设计一组有规律、美观的点阵图,画出前图,画出前4 4个点阵,并用算式计个点阵,并用算式计算出每个点阵的数量算出每个点阵的数量。
