
2024年河北省唐山路南区四校联考数学八年级下册期末调研试题含解析.doc
22页2024年河北省唐山路南区四校联考数学八年级下册期末调研试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上3.考生必须保证答题卡的整洁考试结束后,请将本试卷和答题卡一并交回一、选择题(每小题3分,共30分)1.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.2.菱形的面积为2,其对角线分别为x、y,则y与x的图象大致().A. B.C. D.3.若点是正比例函数图象上任意一点,则下列等式一定成立的是( )A. B. C. D.4.如图,在中,,,于点,则与的面积之比为( )A. B. C. D.5.在Rt△ABC中,BC是斜边,∠B=40°,则∠C=( )A.90° B.60° C.50° D.40°6.某品牌鞋店在一个月内销售某款女鞋,各种尺码鞋的销量如下表所示:尺码/厘米22.52323.52424.5销售量/双354030178通过分析上述数据,对鞋店业主的进货最有意义的是A.平均数 B.众数 C.中位数 D.方差7.某家庭今年上半年1至6月份的月平均用水量5t,其中1至5月份月用水量(单位:t)统计表如图所示,根据信息,该户今年上半年1至6月份用水量的中位数和众数分别是( )A.4,5 B.4.5,6 C.5,6 D.5.5,68.已知m2-n2=mn,则的值等于( )A.1 B.0 C.-1 D.-9.若代数式有意义,则实数x的取值范围是( )A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠210.如图,中俄“海上联合—2017”军事演习在海上编队演习中,两艘航母护卫舰从同一港口O同时出发,一号舰沿南偏西30°方向以12海里/小时的速度航行,二号舰以16海里/小时速度航行,离开港口1.5小时后它们分别到达A,B两点,相距30海里,则二号舰航行的方向是( ) A.南偏东30° B.北偏东30° C.南偏东 60° D.南偏西 60°二、填空题(每小题3分,共24分)11.如果多边形的每个外角都是45°,那么这个多边形的边数是_____.12.一组数据为5,7,3,,6,4. 若这组数据的众数是5,则该组数据的平均数是______.13.如图,在中,,,分别是,的中点,在的延长线上,,,,则四边形的周长是____________.14.当a__________时,分式有意义.15.若点A、B在函数的图象上,则与的大小关系是________.16.若x=-1, 则x2+2x+1=__________.17.如图,正方形中,,点在边上,且.将沿对折至,延长交边于点,连接、.则下列结论:①:②;③:④.其中正确的有_(把你认为正确结论的序号都填上)18.经过多边形一个顶点共有5条对角线,若这个多边形是正多边形,则它的每一个外角是__度.三、解答题(共66分)19.(10分)已知:如图,四边形中,、、、分别为、、和的中点,且.求证:和互相垂直且平分. 20.(6分)化简或计算:(1)()2•(﹣)(2)÷﹣×21.(6分)如图,在□ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD交于点G、H,求证:AG=CH.22.(8分)某学生在化简求值:其中时出现错误.解答过程如下:原式=(第一步)=(第二步)=(第三步)当时,原式=(第四步)①该学生解答过程从第__________步开始出错,其错误原因是____________________.②写出此题的正确解答过程.23.(8分)某超市销售一种成本为40元千克的商品,若按50元千克销售,一个月可售出500千克,现打算涨价销售,据市场调查,涨价x元时,月销售量为m千克,m是x的一次函数,部分数据如下表: 观察表中数据,直接写出m与x的函数关系式:_______________:当涨价5元时,计算可得月销售利润是___________元;当售价定多少元时,会获得月销售最大利润,求出最大利润.24.(8分)对于给定的两个“函数,任取自变量x的一个值,当x<1时,它们对应的函数值互为相反数;当x≥1时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x-4,它的相关函数为.(1)一次函数y= -x+5的相关函数为______________.(2)已知点A(b-1,4),点B坐标(b+3,4),函数y=3x-2的相关函数与线段AB有且只有一个交点,求b的取值范围.(3)当b+1≤x≤b+2时,函数y=-3x+b-2的相关函数的最小值为3,求b的值.25.(10分)如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B的直线交x轴于C,且△ABC面积为1.(1)求点C的坐标及直线BC的解析式;(2)如图1,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求点G的坐标;(3)如图2,若M为线段BC上一点,且满足S△AMB=S△AOB,点E为直线AM上一动点,在x轴上是否存在点D,使以点D,E,B,C为顶点的四边形为平行四边形?若存在,请直接写出点D的坐标;若不存在,请说明理由.26.(10分)如图,在平面直角坐标系中,直线y=x+2与x轴、y轴分别交于A、B两点,以A B为边在第二象限内作正方形ABCD.(1)求点A、B的坐标,并求边AB的长;(2)求点D的坐标;(3)在x轴上找一点M,使△MDB的周长最小,请求出M点的坐标.参考答案一、选择题(每小题3分,共30分)1、C【解析】根据轴对称图形与中心对称图形的概念,结合选项所给图形即可判断.【详解】解:A、不是中心对称图形,也不是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,也是轴对称图形,故本选项正确;D、是中心对称图形,不是轴对称图形,故本选项错误.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、C【解析】先根据菱形的面积公式,得出x、y的函数关系,再根据x的取值范围选出答案.【详解】∵菱形的面积S=∴,即y=其中,x>0故选:C【点睛】本题考查菱形面积公式的应用,注意在求解出x、y的关系后,还需要判断x的取值范围.3、A【解析】由函数图象与函数表达式的关系可知,点A满足函数表达式,可将点A的坐标代入函数表达式,得到关于a、b的等式;再根据等式性质将关于a、b的等式进行适当的变形即可得出正确选项.【详解】∵点A(a,b)是正比例函数图象上的一点,∴,∴2a+3b=0.故选A【点睛】本题考查函数图象上点的坐标与函数关系式的关系,等式的基本性质,能根据等式的基本性质进行适当变形是解决本题的关键.4、A【解析】易证得△BCD∽△BAC,得∠BCD=∠A=30°,那么BC=2BD,即△BCD与△BAC的相似比为1:2,根据相似三角形的面积比等于相似比的平方即可得到正确的结论.【详解】解:∵∴∠BDC=90°,∵∠B=∠B,∠BDC=∠BCA=90°,∴△BCD∽△BAC;①∴∠BCD=∠A=30°;Rt△BCD中,∠BCD=30°,则BC=2BD;由①得:S△BCD:S△BAC=(BD:BC)2=1:4;故选:A.【点睛】此题主要考查的是直角三角形和相似三角形的性质;相似三角形的性质:相似三角形的周长比等于相似比,面积比等于相似比的平方.5、C【解析】BC是斜边,则∠A=90°,利用三角形内角和定理即可求出∠C.【详解】∵BC是斜边∴∠A=90°∴∠C=180°-90°-40°=50°故选C.【点睛】本题考查三角形内角和定理,根据BC是斜边得出∠A是解题的关键.6、B【解析】解:众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.故选B.7、D【解析】先根据平均数的定义求出1月份的用水量,再根据中位数和众数的定义求解可得.【详解】解:根据题意知1月份的用水量为5×1-(3+1+4+5+1)=1(t),∴1至1月份用水量从小到大排列为:3、4、5、1、1、1,则该户今年1至1月份用水量的中位数为、众数为1.故选:D【点睛】本题主要考查众数和中位数,解题的关键是根据平均数定义求出1月份用水量.求中位数时要注意先对数据排序.8、C【解析】根据分式的运算法则即可求出答案.【详解】解:∵m2-n2=mn,且mn≠0,∴,即,故选:C.【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.9、D【解析】试题解析:由题意得,且 解得且 故选D.10、C【解析】【分析】由题意可知OA=18,OB=24,AB=30,由勾股定理逆定理可知∠AOB=90°,结合方位角即可确定出二号舰的航行方向.【详解】如图,由题意得:OA=12×1.5=18,OB=16×1.5=24,∵AB=30,∴OA2+OB2=182+242=900=302=AB2,∴∠AOB=90°,∵∠AOC=30°,∴∠BOC=∠AOB-∠AOC=60°,∴二号舰航行的方向是南偏东 60°,故选C.【点睛】本题考查了方位角、勾股定理逆定理,熟练掌握勾股定理逆定理是解本题的关键.二、填空题(每小题3分,共24分)11、1【解析】∵一个多边形的每个外角都等于45°,∴多边形的边数为360°÷45°=1.则这个多边形是八边形.12、5【解析】首先根据众数的定义:是一组数据中出现次数最多的数值,即可得出,进而可求得该组数据的平均数.【详解】解:根据题意,可得则该组数据的平均数为故答案为5.【点睛】此题主要考查众数的理解和平均数的求解,熟练掌握,即可解题.13、1【解析】根据勾股定理先求出BC的长,再根据三角形中位线定理和直角三角形的性质求出DE和AE的长,进而由已知可判定四边形AEDF是平行四边形,从而求得其周长.【详解】解:在Rt△ABC中,∵AC=6,AB=8,∴BC=10,∵E是BC的中点,∴AE=BE=5,∴∠BAE=∠B,∵∠FDA=∠B,∴∠FDA=∠BAE,∴DF∥AE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC=3,∴四边形AEDF是平行四边形∴四边形AEDF的周长=2×(3+5)=1.故答案为:1.【点睛】本题考查三角形中位线定理的运用,熟悉直角三角形的性质、等腰三角形的判定以及平行四边形的判定.熟练运用三角形的中位线定理和直角三角形的勾股定理是解题的关键.14、【解析】根据分式有意义的条件可得,再解不等式即可.【详解】解:分式有意义,则;解得:,故答案为:.【点睛。
