
广东省深圳市锦华实验学校2024年数学八年级下册期末经典试题含解析.doc
24页广东省深圳市锦华实验学校2024年数学八年级下册期末经典试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题(每题4分,共48分)1.如图,在点中,一次函数y=kx+2(k<0)的图象不可能经过的点是( )A. B. C. D.2.的算术平方根是( )A. B. C. D.3.下列说法中错误的是( )A.四个角相等的四边形是矩形 B.四条边相等的四边形是正方形C.对角线相等的菱形是正方形 D.对角线垂直的矩形是正方形4.在平面直角坐标系中,点在第一象限,若点关于轴的对称点在直线上,则的值为( )A.3 B.2 C.1 D.-15.如图,边长为2的菱形ABCD中,∠A=60º,点M是边AB上一点,点N是边BC上一点,且∠ADM=15º,∠MDN=90º,则点B到DN的距离为( )A. B. C. D.26.在平面直角坐标系中,若点P的坐标为(﹣3,2),则点P所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如图,一个矩形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度数是( )A.120° B.90 ° C.60° D.30°8.下列语句:(1)可以把半径相等的两个圆中的一个看成是由另一个平移得到的;(2)可以把两个全等图形中的一个看成是由另一个平移得到的;(3)经过旋转,对应线段平行且相等;(4)中心对称图形上每一对对应点所连成的线段都被对称中心平分.其中正确的有( )A.一个 B.两个 C.三个 D.四个9.下列计算结果正确的是( )A.+= B.3-=3C.×= D.=510.如图,在平行四边形ABCD中,∠A=40°,则∠C大小为( )A.40° B.80° C.140° D.180°11.如图,矩形ABCD中,AC与BD交于点O,若,,则对角线AC的长为( )A.5 B.7.5 C.10 D.1512.如图,在平行四边形中,∠A=40°,则∠B的度数为( )A.100° B.120° C.140° D.160°二、填空题(每题4分,共24分)13.若实数x,y满足+(y+)2=0,则yx的值为________.14.若点与点关于原点对称,则_______________.15.一次函数y=kx+3的图象如图所示,则方程kx+3=0的解为__________.16.如图,Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D.若BC=16,CD=6,则AC=_____.17.如图,将矩形纸片ABCD分别沿AE、CF折叠,若B、D两点恰好都落在对角线的交点O上,下列说法:①四边形AECF为菱形,②∠AEC=120°,③若AB=2,则四边形AECF的面积为,④AB:BC=1:2,其中正确的说法有_____.(只填写序号)18.若在实数范围内有意义,则的取值范围是____________.三、解答题(共78分)19.(8分)如图,两个全等的Rt△AOB、Rt△OCD分别位于第二、第一象限,∠ABO=∠ODC=90°,OB、OD在x轴上,且∠AOB=30°,AB=1.(1)如图1中Rt△OCD可以看作由Rt△AOB先绕点O顺时针旋转 度,再绕斜边中点旋转 度得到的,C点的坐标是 ;(2)是否存在点E,使得以C、O、D、E为顶点的四边形是平行四边形,若存在,写出E点的坐标;若不存在请说明理由.(3)如图2将△AOC沿AC翻折,O点的对应点落在P点处,求P点的坐标.20.(8分)我们知道:“距离地面越高,气温越低.”下表表示的是某地某时气温随高度变化而变化的情况距离地面高度012345气温201482﹣4﹣10(1)请你用关系式表示出与的关系;(2)距离地面的高空气温是多少?(3)当地某山顶当时的气温为,求此山顶与地面的高度.21.(8分)珠海长隆海洋王国暑假期间推出了两套优惠方案:①购买成人票两张以上(包括两张),则儿童票按6折出售;②成人票和儿童票一律按8.5折出售,已知成人票是350元/张,儿童票是240元/张,张华准备暑假期间带家人到长隆海洋王国游玩,准备购买8张成人票和若干张儿童票.(1)请分别写出两种优惠方案中,购买的总费用y(元)与儿童人数x(人)之间的函数关系式;(2)对x的取值情况进行分析,说明选择哪种方案购票更省钱.22.(10分)四边形为正方形,点为线段上一点,连接,过点作,交射线于点,以、为邻边作矩形,连接.(1)如图,求证:矩形是正方形;(2)当线段与正方形的某条边的夹角是时,求的度数.23.(10分)计算:(1)(﹣15)×××(﹣×) (2)++(3) (4)(﹣3)2+﹣(1+2)﹣(﹣3)024.(10分)正方形ABCD中,点E是BD上一点,过点E作EF⊥AE交射线CB于点F,连结CE.(1)已知点F段BC上.①若AB=BE,求∠DAE度数;②求证:CE=EF;(2)已知正方形边长为2,且BC=2BF,请直接写出线段DE的长.25.(12分)如图1,平面直角坐标系中,直线AB:y=﹣x+b交x轴于点A(8,0),交y轴正半轴于点B.(1)求点B的坐标;(2)如图2,直线AC交y轴负半轴于点C,AB=BC,P为线段AB上一点,过点P作y轴的平行线交直线AC于点Q,设点P的横坐标为t,线段PQ的长为d,求d与t之间的函数关系式;(3)在(2)的条件下,M为CA延长线上一点,且AM=CQ,在直线AC上方的直线AB上是否存在点N,使△QMN是以QM为斜边的等腰直角三角形?若存在,请求出点N的坐标及PN的长度;若不存在,请说明理由.26.如图,△ABC中,∠A=60°,∠C=40°,DE垂直平分BC,连接BD.(1)尺规作图:过点D作AB的垂线,垂足为F.(保留作图痕迹,不写作法)(2)求证:点D到BA,BC的距离相等.参考答案一、选择题(每题4分,共48分)1、D【解析】由条件可判断出直线所经过的象限,再进行判断即可.【详解】解:∵在y=kx+2(k<0)中,令x=0可得y=2,∴一次函数图象一定经过第一、二象限,∵k<0,∴y随x的增大而减小,∴一次函数不经过第三象限,∴其图象不可能经过Q点,故选:D.【点睛】本题主要考查一次函数的图象,利用k、b的正负判断一次函数的图象位置是解题的关键,即在y=kx+b中,①k>0,b>0,直线经过第一、二、三象限,②k>0,b<0,直线经过第一、三、四象限,③k<0,b>0,直线经过第一、二、四象限,④k<0,b<0,直线经过第二、三、四象限.2、B【解析】根据算术平方根的概念求解即可.【详解】解:4的算术平方根是2,故选B.【点睛】本题考查了算术平方根的概念,属于基础题型,熟练掌握算术平方根的定义是解题的关键.3、B【解析】根据矩形和正方形的性质和判定进行分析即可.【详解】A、四个角相等的四边形则每个角为90°,所以是矩形,该说法正确,不符合题意;B、四条边相等的四边形是菱形,不一定是正方形,该说法错误,符合题意;C、对角线相等的菱形是正方形,该说法正确,不符合题意;D、对角线垂直的矩形是正方形,该说法正确,不符合题意.故选B.【点睛】考核知识点:正方形和矩形的判定.理解定理是关键.4、C【解析】根据关于x轴的对称点的坐标特点可得B(2,−m),然后再把B点坐标代入y=−x+1可得m的值.【详解】解:∵点A(2,m),∴点A关于x轴的对称点B(2,−m),∵B在直线y=−x+1上,∴−m=−2+1=−1,∴m=1,故选C.【点睛】此题主要考查了关于x轴对称的点的坐标特点,以及一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足函数解析式.5、B【解析】连接BD,作BE⊥DN于E,利用菱形的性质和已知条件证得△ABD和△BCD是等边三角形,从而证得BD=AB=AD=2,∠ADB=∠CDB=60°,进而证得△BDE是等腰直角三角形,解直角三角形即可求得点B到DN的距离.【详解】解:连接BD,作BE⊥DN于E,∵边长为2的菱形ABCD中,∠A=60°,∴△ABD和△BCD是等边三角形,∴BD=AB=AD=2,∠ADB=∠CDB=60°∵∠A=60°,∴∠ADC=180°-60°=120°,∵∠ADM=15°,∠MDN=90°,∴∠CDN=120°-15°-90°=15°,∴∠EDB=60°-15°=45°,∴BE=BD=,∴点B到DN的距离为,故选:B.【点睛】本题考查了菱形的性质,等边三角形的判定和性质,等腰直角三角形的判定和性质,解直角三角形等,作出辅助线,构建等腰直角三角形是解题的关键.6、B【解析】试题分析:第一象限点的坐标为(+,+);第二象限点的坐标为(-,+);第三象限点的坐标为(-,-);第四象限点的坐标为(+,-),则点P在第二象限.考点:平面直角坐标系中的点7、B【解析】根据直角三角形两锐角互余解答.【详解】由题意得,剩下的三角形是直角三角形,所以,∠1+∠2=90°.故选:B.【点睛】此题考查直角三角形的性质,解题关键在于掌握其性质.8、B【解析】根据平移的性质,对各语句进行一一分析,排除错误答案.【详解】(1)可以把半径相等的两个圆中的一个看成是由另一个平移得到的,正确;(2)可以把两个全等图形中的一个看成是由另一个平移得到的,错误;平移既需要两个图形全等,还需要两个图形有一种特殊的位置关系,(3)经过平移,对应线段平行且相等,故原语句错误;(4)中心对称图形上每一对对应点所连成的线段都被对称中心平分,正确.故选B.【点睛】本题利用了平移的基本性质:①图形平移前后的形状和大小没有变化,只是位置发生变化;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.9、C【解析】选项A. 不能计算.A错误. 选项B. ,B错误.选项C. ,正确. 选项 D. ,D错误.故选C.10、A【解析】由平行四边形的性质:对角相等,得出∠C=∠A.【详解】解:∵四边形ABCD是平行四边形,∴∠C=∠A=40°,故选A.【点睛】本题考查了平行四边形的性质,解答本题的关键是掌握平行四边形的对角相等.11、C【解析】分析:根据矩形对角线的性质可推出△ABO为等边三角形.已知AB=5,易求AC的长.详解:∵四边形ABCD是矩形,∴AC=BD. ∵AO=AC,BO=BD,∴AO=BO. 又∵∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=5,∴AC=2AO=1. 故选C.点睛:本题考查的是矩形的性质以及等边三角形的判定和性质,熟记矩形的各种性质是解题的关键.12、C【解析】根。
