
人教版小学数学知识点总结(大全).pdf
38页可编辑版小学数学知识点大全小学数学知识点大全第一章第一章 数和数的运算数和数的运算一、概念一、概念(一)整数(一)整数1 1、整数的意义、整数的意义自然数和 0 都是整数2 2、自然数、自然数我们在数物体的时候,用来表示物体个数的 1,2,3……叫做自然数一个物体也没有,用 0 表示0 也是自然数3 3、计数单位、计数单位一(个) 、十、百、千、万、十万、百万、千万、亿……都是计数单位其中“一”是计数的基本单位10 个 1 是 10,10 个 10 是 100……每相邻两个计数单位之间的进率都是 10这样的计数法叫做十进制计数法4 4、数位、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位5 5、整数的读法:、整数的读法:从高位到低位,一级一级地读读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字每一级末尾的 0 都不读出来,其它数位连续有几个 0 都只读一个零6 6、整数的写法:、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写 07 7、、一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
⑴⑴ 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数改写后的数是原数的准确数 例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿⑵⑵ 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示 例如: 1302490015 省略亿后面的尾数是 13 亿⑶⑶ 四舍五入法:求近似数,看尾数最高位上的数是几,比5 小就舍去,是5 或大于 5 舍去尾数向前一位进 1这种求近似数的方法就叫做四舍五入法8 8、整数大小的比较:、整数大小的比较:位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就Word完美格式可编辑版大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大以此类推二)小数(二)小数1 1、小数的意义、小数的意义把整数 1 平均分成 10 份、100 份、1000 份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示如 1/10 记作 0.1,7/100 记作 0.07一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……一个小数由整数部分、小数部分和小数点部分组成。
数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分小数点右边第一位叫十分位,计数单位是十分之一(0.1) ;第二位叫百分位,计数单位是百分之一(0.01)……小数部分最大的计数单位是十分之一,没有最小的计数单位小数部分有几个数位,就叫做几位小数如 0.36 是两位小数,3.066 是三位小数在小数里,每相邻两个计数单位之间的进率都是10小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是 102 2、小数的读法:、小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点” ,小数部分从左向右顺次读出每一位数位上的数字3 3、小数的写法:、小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字4 4、比较小数的大小:、比较小数的大小:先看它们的整数部分, ,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……5 5、小数的分类、小数的分类⑴⑴ 纯小数:整数部分是零的小数,叫做纯小数。
例如: 0.25 、 0.368 都是纯小数⑵⑵ 带小数:整数部分不是零的小数,叫做带小数 例如: 3.25 、 5.26 都是带小数⑶⑶ 有限小数:小数部分的数位是有限的小数,叫做有限小数 例如: 41.7 、 25.3 、 0.23 都是有限小数⑷⑷ 无限小数:小数部分的数位是无限的小数,叫做无限小数 例如: 4.33 …… 3.1415926 ……⑸⑸ 无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数 例如:∏⑹⑹ 循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数例如: 3.555 …… 0.0333 …… 12.109109 ……Word完美格式可编辑版一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54 ” ⑺⑺ 纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数 例如: 3.111 …… 0.5656 ……⑻⑻ 混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数 3.1222 …… 0.03333 ……写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。
如果循环 节只有一个数字,就只在它的上面点一个点三)分数(三)分数1 1、分数的意义、分数的意义把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“ 1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位2 2、分数的读法:、分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读3 3、分数的写法:、分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写4 4、比较分数的大小、比较分数的大小: :⑴⑴ 分母相同的分数,分子大的那个分数就大⑵⑵ 分子相同的分数,分母小的那个分数就大⑶⑶ 分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小⑷⑷ 如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大5 5、分数的分类、分数的分类按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数⑴⑴ 真分数:分子比分母小的分数叫做真分数。
真分数小于 1⑵⑵ 假分数:分子比分母大或者分子和分母相等的分数,叫做假分数假分数大于或等于 1⑶⑶ 带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数6 6、分数和除法的关系及分数的基本性质、分数和除法的关系及分数的基本性质⑴⑴ 除法是一种运算,有运算符号;分数是一种数因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子⑵⑵ 由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质Word完美格式可编辑版⑶⑶ 分数的分子和分母都乘以或者除以相同的数(0 除外) ,分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据7 7、约分和通分、约分和通分⑴⑴ 分子、分母是互质数的分数,叫做最简分数⑵⑵ 把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分⑶⑶ 约分的方法:用分子和分母的公约数(1 除外)去除分子、分母;通常要除到得出最简分数为止⑷⑷ 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分⑸⑸ 通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数8 8、倒、倒 数数⑴⑴ 乘积是 1 的两个数互为倒数。
⑵⑵ 求一个数(0 除外)的倒数,只要把这个数的分子、分母调换位置⑶⑶ 1 的倒数是 1,0 没有倒数(四)百分数(四)百分数1 1、百分数的意义、百分数的意义表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率或百分比百分数通常用"%"来表示百分号是表示百分数的符号2 2、百分数的读法:、百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读3 3、百分数的写法:、百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示4 4、百分数与折数、成数的互化:、百分数与折数、成数的互化:例如:三折就是 30%,七五折就是 75%,成数就是十分之几,如一成就是牐 闯砂俜质 褪?0%,则六成五就是 65%5 5、纳税和利息:、纳税和利息:税率:应纳税额与各种收入的比率利率:利息与本金的百分率由银行规定按年或按月计算利息的计算公式:利息=本金×利率×时间6 6、百分数与分数的区别主要有以下三点:、百分数与分数的区别主要有以下三点:⑴⑴ 意义不同百分数是“表示一个数是另一个数的百分之几的数 ”它只能表示两数之间的倍数关系,不能表示某一具体数量。
如:可以说 1 米 是 5 米 的 20%,不可以说“一段绳子长为20%米 ”因此,Word完美格式可编辑版百分数后面不能带单位名称分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数” 分数不仅 可以表示两数之间的倍数关系,如:甲数是 3,乙数是 4,甲数是乙数的?;还可以表示一定的数量,如:犌Э恕 米等⑵⑵ 应用范围不同百分数在生产、工作和生活中,常用于调查、统计、分析与比较而分数常常是在测量、计算中,得不到整数结果时使用⑶⑶ 书写形式不同百分数通常不写成分数形式,而采用百分号“%”来表示如:百分之四十五,写作:45%;百分数的分母固定为 100,因此,不论百分数 的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分 数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数7 7、数的互化、数的互化⑴⑴ 小数化成分数:原来有几位小数,就在1 的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分⑵⑵ 分数化成小数:用分母去除分子能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
⑶⑶ 一个最简分数,如果分母中除了 2 和 5 以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有 2 和 5 以外的质因数,这个分数就不能化成有限小数⑷⑷ 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号⑸⑸ 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位⑹⑹ 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数⑺⑺ 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数五)数的整除(五)数的整除1 1、整除的意义、整除的意义整数 a 除以整数 b(b ≠ 0) , 除得的商是整数而没有余数, 我们就说 a 能被 b 整除, 或者说 b 能整除 a 除尽的意义 甲数除以乙数,所得的商是整数或有限小数而余数也为0 时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为 0) 2 2、约数和倍数、约数和倍数⑴⑴ 如果数 a 能被数 b(b ≠ 0)整除,a 就叫做 b 的倍数,b 就叫做 a 的约数(或a 的因数) 倍数和约数是相互依存的。
⑵⑵ 一个数的约数的个数是有限的,其中最小的约数是 1,最大的约数是它本身Word完美格式可编辑版⑶⑶ 一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数3 3、奇数和偶数、奇数和偶数⑴⑴ 自然数按能否被 2 整除的特征可分为奇数和偶数①① 能被 2 整除的数叫做偶数0 也是偶数②② 不能被 2 整除的数叫做奇数⑵⑵ 奇数和偶数的运算性质:①① 相邻两个自然数之和是奇数,之积是偶数②② 奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数;奇数-奇数=偶数,奇数-偶数=奇数,偶数-奇数=奇数,偶数-偶数=偶数;奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数4 4、整除的特征、整除的特征⑴⑴ 个位上是 0、2、4、6、8 的数,都能被 2 整除⑵⑵ 个位上是 0 或 5 的数,都能被 5 整除⑶⑶ 一个数的各位上的数的和能被 3 整除,这个数就能被 3 整除⑷⑷ 一个数各位数上的和能被 9 整除,这个数就能被 9 整除⑸⑸ 能被 3 整除的数不一定能被 9 整除,但是能被 9 整除的数一定能被 3 整除⑹⑹ 一个数的末两位数能被 4(或 25)整除,这个数就能被 4(或 25)整除。
⑺⑺ 一个数的末三位数能被 8(或 125)整除,这个数就能被 8(或 125)整除5 5、质数和合数、质数和合数⑴⑴ 一个数,如果只有1 和它本身两个约数,这样的数叫做质数(或素数) ,100 以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97⑵⑵ 一个数,如果除了 1 和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12 都是合数⑶⑶ 1 不是质数也不是合数,自然数除了1 外,不是质数就是合数如果把自然数按其约数的个数的不同分类,可分为质数、合数和 16 6、分解质因数、分解质因数⑴⑴ 质因数每个合数都可以写成几个质数相乘的形式 其中每个质数都是这个合数的因数, 叫做这个合数的质因数,例如 15=3×5,3 和 5 叫做 15 的质因数⑵⑵ 分解质因数把一个合数用质因数相乘的形式表示出来,叫做分解质因数通常用短除法来分解质因数先用能整除Word完美格式可编辑版这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式⑶⑶ 公因(约)数公因(约)数几个数公有的因数叫做这几个数的公因数。
其中最大的一个叫这几个数的最大公因数公因数只有 1 的两个数,叫做互质数成互质关系的两个数,有下列几种情况:①和任何自然数互质;②相邻的两个自然数互质;③当合数不是质数的倍数时,这个合数和这个质数互质;④两个合数的公约数只有 1 时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数如果两个数是互质数,它们的最大公约数就是 1⑷⑷ 公倍数公倍数①① 几个数公有的倍数叫做这几个数的公倍数其中最大的一个叫这几个数的最大公倍数求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1 为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数②② 几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的二、性质和规律二、性质和规律(一)商不变的规律(一)商不变的规律商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变二)小数的性质(二)小数的性质小数的性质:在小数的末尾添上零或者去掉零小数的大小不变三)小数点位置的移动引起小数大小的变化(三)小数点位置的移动引起小数大小的变化1、小数点向右移动一位,原来的数就扩大 10 倍;小数点向右移动两位,原来的数就扩大 100 倍;小数点向右移动三位,原来的数就扩大 1000 倍……Word完美格式可编辑版2、小数点向左移动一位,原来的数就缩小 10 倍;小数点向左移动两位,原来的数就缩小 100 倍;小数点向左移动三位,原来的数就缩小 1000 倍……3、小数点向左移或者向右移位数不够时,要用“0"补足位四)分数的基本性质(四)分数的基本性质分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外) ,分数的大小不变五)分数与除法的关系(五)分数与除法的关系1、被除数÷除数=被除数/除数2、因为零不能作除数,所以分数的分母不能为零3、被除数 相当于分子,除数相当于分母。
三、运算法则三、运算法则(一)整数四则运算的法则(一)整数四则运算的法则1 1、整数加法:、整数加法:把两个数合并成一个数的运算叫做加法在加法里,相加的数叫做加数,加得的数叫做和加数是部分数,和是总数加数+加数=和一个加数=和-另一个加数2 2、整数减法:、整数减法:已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差被减数是总数,减数和差分别是部分数加法和减法互为逆运算3 3、整数乘法:、整数乘法:求几个相同加数的和的简便运算叫做乘法在乘法里,相同的加数和相同加数的个数都叫做因数相同加数的和叫做积在乘法里,0 和任何数相乘都得 0. 1 和任何数相乘都的任何数一个因数× 一个因数 =积一个因数=积÷另一个因数4 4、整数除法:、整数除法:已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法Word完美格式可编辑版在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商乘法和除法互为逆运算在除法里, 0 不能做除数 因为 0 和任何数相乘都得 0, 所以任何一个数除以 0, 均得不到一个确定的商。
被除数÷除数=商除数=被除数÷商被除数=商×除数5 5、乘方、乘方: :求几个相同因数的积的运算叫做乘方例如 3 × 3 =32(二)小数四则运算(二)小数四则运算1 1、小数加法:、小数加法:小数加法的意义与整数加法的意义相同是把两个数合并成一个数的运算2 2、小数减法:、小数减法:小数减法的意义与整数减法的意义相同已知两个加数的和与其中的一个加数,求另一个加数的运算.3 3、小数乘法:、小数乘法:小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少4 4、小数除法:、小数除法:小数除法的意义与整数除法的意义相同, 就是已知两个因数的积与其中一个因数, 求另一个因数的运算三)分数四则运算(三)分数四则运算1 1、分数加法:、分数加法:分数加法的意义与整数加法的意义相同 是把两个数合并成一个数的运算2 2、分数减法:、分数减法:分数减法的意义与整数减法的意义相同已知两个加数的和与其中的一个加数,求另一个加数的运算3 3、分数乘法:、分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
4 4、分数除法:、分数除法:分数除法的意义与整数除法的意义相同 就是已知两个因数的积与其中一个因数, 求另一个因数的运算四)运算定律(四)运算定律1 1、加法运算定律、加法运算定律Word完美格式可编辑版⑴⑴ 加法交换律:两个数相加,交换加数的位置,它们的和不变,即 a+b=b+a ⑵⑵ 加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 2 2、乘法运算定律、乘法运算定律⑴⑴ 乘法交换律:两个数相乘,交换因数的位置它们的积不变,即 a×b=b×a⑵⑵ 乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) ⑶⑶乘法分配律:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘,再把两个积相加,即 (a+b)×c=a×c+b×c ⑷⑷ 乘法分配律扩展:两个数的差与一数相乘,可以先把它们与这个数分别相乘,再相减,即(a-b) ×c=a×c-b×c3 3、减法运算定律、减法运算定律⑴⑴ 从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即 a-b-c=a-(b+c) 。
⑵⑵ 一个数连续减去两个数,可以先减去第二个减数,再减去第一个减数,即 a-b-c=a-c-b4 4、除法运算定律、除法运算定律⑴⑴ 一个数连续除以两个数,可以除以这两个数的集,即 a÷b÷c=a÷(b×c)⑵⑵ 一个数连续除以两个数,可以先除以第二除数,再除以第一个除数,即 a÷b÷c=a÷c÷b5 5、其它、其它a-b+c=a+c-ba-b+c=a+(b-c)a÷b×c=a×c÷ba÷b×c=a÷(b÷c)6 6、积的变化规律:、积的变化规律:在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数Word完美格式可编辑版推广:一个因数扩大 A 倍,另一个因数扩大 B 倍,积扩大 AB 倍一个因数缩小 A 倍,另一个因数缩小 B 倍,积缩小 AB 倍7 7、商不变性质、商不变性质: : 在除法中,被除数和除数同时扩大(或缩小)相同的倍数,商不变m≠0 a÷b=(a×m) ÷(b×m)=(a÷m) ÷(b÷m)推广:被除数扩大(或缩小)A 倍,除数不变,商也扩大(或缩小)A 倍被除数不变,除数扩大(或缩小)A 倍,商反而缩小(或扩大)A 倍利用积的变化规律和商不变规律性质可以使一些计算简便。
但在有余数的除法中要注意余数如:8500÷200= 可以把被除数、除数同时缩小 100 倍来除,即 85÷2= ,商不变,但此时的余数1 是被缩小 100被后的,所以还原成原来的余数应该是 100五)计算方法(五)计算方法1 1、整数加法计算法则:、整数加法计算法则:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一2 2、整数减法计算法则:、整数减法计算法则:相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减3 3、整数乘法计算法则:、整数乘法计算法则:先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来4 4、整数除法计算法则:、整数除法计算法则:先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面如果哪一位上不够商1,要补“0”占位每次除得的余数要小于除数5 5、小数乘法法则:、小数乘法法则:先按照整数乘法的计算法则算出积, 再看因数中共有几位小数, 就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。
6 6、除数是整数的小数除法计算法则:、除数是整数的小数除法计算法则:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0” ,再继续除7 7、除数是小数的除法计算法则:、除数是小数的除法计算法则:Word完美格式可编辑版先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“ 0” ) ,然后按照除数是整数的除法法则进行计算8 8、同分母分数加减法计算方法、同分母分数加减法计算方法: :同分母分数相加减,只把分子相加减,分母不变9 9、异分母分数加减法计算方法、异分母分数加减法计算方法: :先通分,然后按照同分母分数加减法的的法则进行计算1010、带分数加减法的计算方法、带分数加减法的计算方法: :整数部分和分数部分分别相加减,再把所得的数合并起来1111、分数乘法的计算法则、分数乘法的计算法则: :分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母1212、分数除法的计算法则、分数除法的计算法则: :甲数除以乙数(0 除外) ,等于甲数乘乙数的倒数。
六)(六) 运算顺序运算顺序1 1、、小数四则运算的运算顺序和整数四则运算顺序相同2 2、、分数四则运算的运算顺序和整数四则运算顺序相同3 3、、没有括号的混合运算:同级运算从左往右依次运算;两级运算 先算乘、除法,后算加减法4 4、、有括号的混合运算:先算小括号里面的,再算中括号里面的,最后算括号外面的5 5、、第一级运算:加法和减法叫做第一级运算6 6、、第二级运算:乘法和除法叫做第二级运算四、应用四、应用(一)整数和小数的应用(一)整数和小数的应用1 1、简单应用题、简单应用题((1 1))简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题2 2)) 解题步骤:a 审题理解题意:了解应用题的内容,知道应用题的条件和问题读题时,不丢字不添字边读边思考,弄明白题中每句话的意思也可以复述条件和问题,帮助理解题意Word完美格式可编辑版b 选择算法和列式计算:这是解答应用题的中心工作从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称C 检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。
如果发现错误,马上改正2 2、复合应用题、复合应用题((1 1))有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题2 2))含有三个已知条件的两步计算的应用题求比两个数的和多(少)几个数的应用题比较两数差与倍数关系的应用题3 3))含有两个已知条件的两步计算的应用题已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差) 已知两数之和与其中一个数,求两个数相差多少(或倍数关系) 4 4))解答连乘连除应用题5 5))解答三步计算的应用题6 6))解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数d 答案:根据计算的结果,先口答,逐步过渡到笔答7)(7) 解答加法应用题:a 求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少b 求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少8)8)解答减法应用题:a 求剩余的应用题:从已知数中去掉一部分,求剩下的部分 -b 求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。
c 求比一个数少几的数的应用题:已知甲数是多少, ,乙数比甲数少多少,求乙数是多少9)(9) 解答乘法应用题:a 求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数b 求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少 10)( 10) 解答除法应用题:Word完美格式可编辑版a 把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少b 求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份C 求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍d 已知一个数的几倍是多少,求这个数的应用题1111)常见的数量关系:)常见的数量关系:总价= 单价×数量路程= 速度×时间工作总量=工作时间×工效总产量=单产量×数量3 3、典型应用题、典型应用题具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题1 1)平均数问题:)平均数问题:平均数是等分除法的发展解题关键:在于确定总数量和与之相对应的总份数算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。
数量关系式:数量之和÷数量的个数=算术平均数加权平均数:已知两个以上若干份的平均数,求总平均数是多少数量关系式 (部分平均数×权数)的总和÷(权数的和)=加权平均数差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数数量关系式:(大数-小数)÷ 2=小数应得数最大数与各数之差的和÷总份数=最大数应给数最大数与个数之差的和÷总份数=最小数应得数例: 一辆汽车以每小时 100 千米 的速度从甲地开往乙地, 又以每小时 60 千米的速度从乙地开往甲地求这辆车的平均速度分析:求汽车的平均速度同样可以利用公式此题可以把甲地到乙地的路程设为“ 1 ” ,则汽车行驶的总路程为“ 2 ” ,从甲地到乙地的速度为 100 ,所用的时间为,汽车从乙地到甲地速度为 60 千米,所用的时间是,汽车共行的时间为 + = , 汽车的平均速度为 2 ÷ =75 (千米)((2 2)归一问题:)归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。
Word完美格式可编辑版根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题一次归一问题,用一步运算就能求出“单一量”的归一问题又称“单归一 ”两次归一问题,用两步运算就能求出“单一量”的归一问题又称“双归一 ”正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量) ,然后以它为标准,根据题目的要求算出结果数量关系式:单一量×份数=总数量(正归一)总数量÷单一量=份数(反归一)例 一个织布工人,在七月份织布 4774 米 , 照这样计算,织布 6930 米,需要多少天?分析:必须先求出平均每天织布多少米,就是单一量 693 0 ÷( 477 4 ÷ 31 ) =45 (天)((3 3)归总问题:)归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数) ,通过求总数量求得单位数量的个数(或单位数量) 特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。
数量关系式:单位数量×单位个数÷另一个单位数量 = 另一个单位数量单位数量×单位个数÷另一个单位数量= 另一个单位数量例 修一条水渠,原计划每天修 800 米 , 6 天修完实际 4 天修完,每天修了多少米?分析:因为要求出每天修的长度,就必须先求出水渠的长度所以也把这类应用题叫做“归总问题”不同之处是 “归一” 先求出单一量, 再求总量, 归总问题是先求出总量, 再求单一量 80 0 × 6 ÷ 4=1200(米)((4 4)和差问题:)和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和) ,然后再求另一个数解题规律: (和+差)÷2 = 大数大数-差=小数(和-差)÷2=小数和-小数= 大数例 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人?分析:从乙班调 46 人到甲班,对于总数没有变化,现在把乙数转化成 2 个乙班,即 9 4 - 12 ,由此得到现在的乙班是( 9 4 - 12 )÷ 2=41 (人) ,乙班在调出 46 人之前应该为 41+46=87 (人) ,甲班为 9 4 - 87=7 (人)Word完美格式可编辑版((5 5)和倍问题:)和倍问题:已知两个数的和及它们之间的倍数关系,求两个数各是多少的应用题,叫做和倍问题。
解题关键:找准标准数(即 1 倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数求出倍数和之后,再求出标准的数量是多少根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量解题规律:和÷倍数和=标准数标准数×倍数=另一个数例:汽车运输场有大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小汽车各有多少辆?分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与( 5+1 )倍对应,总车辆数应( 115-7 )辆 列式为( 115-7 )÷( 5+1 ) =18 (辆) , 18 × 5+7=97 (辆)((6 6)差倍问题:)差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题解题规律:两个数的差÷(倍数-1 )= 标准数标准数×倍数=另一个数例 甲乙两根绳子,甲绳长 63 米 ,乙绳长 29 米 ,两根绳剪去同样的长度,结果甲所剩的长度是乙绳 长的 3 倍,甲乙两绳所剩长度各多少米? 各减去多少米?分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳多( 3-1 )倍,以乙绳的长度为标准数。
列式( 63-29 )÷( 3-1 ) =17 (米)…乙绳剩下的长度, 17 × 3=51(米)…甲绳剩下的长度, 29-17=12 (米)…剪去的长度7 7)行程问题:)行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答解题关键及规律:同时同地相背而行:路程=速度和×时间同时相向而行:相遇时间=速度和×时间同时同向而行(速度慢的在前,快的在后) :追及时间=路程速度差同时同地同向而行(速度慢的在后,快的在前) :路程=速度差×时间例 甲在乙的后面 28 千米 ,两人同时同向而行,甲每小时行 16 千米 ,乙每小时行 9 千米,甲几小时追上乙?分析:甲每小时比乙多行( 16-9 )千米,也就是甲每小时可以追近乙( 16-9 )千米,这是速度差已知甲在乙的后面 28 千米 (追击路程) , 28 千米 里包含着几个( 16-9 )千米,也就是追击所需要的时间列式 2 8 ÷ ( 16-9 ) =4 (小时)Word完美格式可编辑版((8 8)流水问题:)流水问题:一般是研究船在“流水”中航行的问题。
它是行程问题中比较特殊的一种类型,它也是一种和差问题它的特点主要是考虑水速在逆行和顺行中的不同作用船速:船在静水中航行的速度水速:水流动的速度顺水速度:船顺流航行的速度逆水速度:船逆流航行的速度顺速=船速+水速逆速=船速-水速解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答解题时要以水流为线索解题规律:船行速度=(顺水速度+ 逆流速度)÷2流水速度=(顺流速度逆流速度)÷2路程=顺流速度× 顺流航行所需时间路程=逆流速度×逆流航行所需时间例 一只轮船从甲地开往乙地顺水而行,每小时行 28 千米 ,到乙地后,又逆水 航行,回到甲地逆水比顺水多行 2 小时,已知水速每小时 4 千米求甲乙两地相距多少千米?分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间已知顺水速度和水流速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用 2 小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程列式为 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小时) 28× 5=140 (千米) 。
9 9)还原问题:)还原问题:已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题解题关键:要弄清每一步变化与未知数的关系解题规律:从最后结果 出发,采用与原题中相反的运算(逆运算)方法,逐步推导出原数根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数解答还原问题时注意观察运算的顺序若需要先算加减法,后算乘除法时别忘记写括号例 某小学三年级四个班共有学生 168 人,如果四班调 3 人到三班, 三班调 6 人到二班, 二班调 6 人到一班,一班调 2 人到四班,则四个班的人数相等,四个班原有学生多少人?分析:当四个班人数相等时,应为 168 ÷ 4 ,以四班为例,它调给三班 3 人,又从一班调入 2 人,Word完美格式可编辑版所以四班原有的人数减去 3 再加上 2 等于平均数四班原有人数列式为 168 ÷ 4-2+3=43 (人)一班原有人数列式为 168 ÷ 4-6+2=38 (人) ;二班原有人数列式为 168 ÷ 4-6+6=42 (人)三班原有人数列式为 168 ÷ 4-3+6=45 (人) 1010)植树问题:)植树问题:这类应用题是以“植树”为内容。
凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题解题关键: 解答植树问题首先要判断地形, 分清是否封闭图形, 从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算解题规律:沿线段植树棵树=段数+1棵树=总路程÷株距+1株距=总路程÷(棵树-1)总路程=株距×(棵树-1)沿周长植树棵树=总路程÷株距株距=总路程÷棵树总路程=株距×棵树例 沿公路一旁埋电线杆 301 根,每相邻的两根的间距是 50 米 后来全部改装,只埋了 201 根求改装后每相邻两根的间距分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一列式为 50 ×( 301-1 )÷( 201-1 ) =75(米)((1111 )盈亏问题:)盈亏问题:是在等分除法的基础上发展起来的他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余) ,或两次都不足) ,已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题解题关键:盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差(也称总差额) ,用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。
解题规律:总差额÷每人差额=人数总差额的求法可以分为以下四种情况:第一次多余,第二次不足,总差额=多余+ 不足第一次正好,第二次多余或不足 ,总差额=多余或不足第一次多余,第二次也多余,总差额=大多余-小多余第一次不足,第二次也不足, 总差额= 大不足-小不足例 参加美术小组的同学, 每个人分的相同的支数的色笔, 如果小组 10 人, 则多 25 支, 如果小组有 12Word完美格式可编辑版人,色笔多余 5 支求每人 分得几支?共有多少支色铅笔?分析:每个同学分到的色笔相等这个活动小组有 12 人,比 10 人多 2 人,而色笔多出了( 25-5 )=20 支 , 2 个人多出 20 支,一个人分得 10 支列式为( 25-5 )÷ ( 12-10 ) =10 (支) 10 ×12+5=125 (支) 1212)年龄问题:)年龄问题:将差为一定值的两个数作为题中的一个条件,这种应用题被称为“年龄问题” 解题关键:年龄问题与和差、和倍、差倍问题类似,主要特点是随着时间的变化,年岁不断增长,但大小两个不同年龄的差是不会改变的,因此,年龄问题是一种“差不变”的问题,解题时,要善于利用差不变的特点。
例 父亲 48 岁,儿子 21 岁问几年前父亲的年龄是儿子的 4 倍?分析:父子的年龄差为 48-21=27 (岁) 由于几年前父亲年龄是儿子的 4 倍,可知父子年龄的倍数差是( 4-1 )倍这样可以算出几年前父子的年龄,从而可以求出几年前父亲的年龄是儿子的 4 倍列式为: 21( 48-21 )÷( 4-1 ) =12 (年)((1313)鸡兔问题:)鸡兔问题:已知“鸡兔”的总头数和总腿数求“鸡”和“兔”各多少只的一类应用题通常称为“鸡兔问题”又称鸡兔同笼问题解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数解题规律: (总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数兔子只数=(总腿数-2×总头数)÷2如果假设全是兔子,可以有下面的式子:鸡的只数=(4×总头数-总腿数)÷2兔的头数=总头数-鸡的只数例 鸡兔同笼共 50 个头, 170 条腿问鸡兔各有多少只?兔子只数 ( 170-2 × 50 )÷ 2 =35 (只)鸡的只数 50-35=15 (只)(二)分数和百分数的应用(二)分数和百分数的应用1 1、分数加减法应用题:、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。
2 2、分数乘法应用题:、分数乘法应用题:是指已知一个数,求它的几分之几是多少的应用题Word完美格式可编辑版特征:已知单位“1”的量和分率,求与分率所对应的实际数量解题关键:准确判断单位“1”的量找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式3 3、分数除法应用题:、分数除法应用题:求一个数是另一个数的几分之几(或百分之几)是多少特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几 “一个数”是比较量, “另一个数”是标准量求分率或百分率,也就是求他们的倍数关系解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一” ,谁和单位一的量作比较,谁就作被除数甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙甲比乙多(或少)几分之几(百分之几) :甲减乙比乙多(或少几分之几)或(百分之几) 关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数已知一个数的几分之几(或百分之几 ) ,求这个数特征:已知一个实际数量和它相对应的分率,求单位“1”的量解题关键:准确判断单位“1”的量把单位“1”的量看成 x 根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际数量。
4 4、出勤率、出勤率发芽率=发芽种子数/试验种子数×100%小麦的出粉率= 面粉的重量/小麦的重量×100%产品的合格率=合格的产品数/产品总数×100%职工的出勤率=实际出勤人数/应出勤人数×100%5 5、工程问题:、工程问题:是分数应用题的特例,它与整数的工作问题有着密切的联系它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题解题关键:把工作总量看作单位“1” ,工作效率就是工作时间的倒数,然后根据题目的具体情况,灵活运用公式数量关系式:工作总量=工作效率×工作时间工作效率=工作总量÷工作时间Word完美格式可编辑版工作时间=工作总量÷工作效率工作总量÷工作效率和=合作时间6 6、纳税、纳税纳税就是把根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家缴纳的税款叫应纳税款应纳税额与各种收入的(销售额、营业额、应纳税所得额 ……)的比率叫做税率7 7、利息、利息存入银行的钱叫做要本金取款时银行多支付的钱叫做利息利息与本金的比值叫做利率利息=本金×利率×时间常用的数量关系式常用的数量关系式1 1、、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2 2、、1 倍数×倍数=几倍数几倍数÷1 倍数=倍数几倍数÷倍数=1 倍数3 3、、速度×时间=路程路程÷速度=时间路程÷时间=速度4 4、、单价×数量=总价总价÷单价=数量总价÷数量=单价5 5、、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6 6、、加数+加数=和和-一个加数=另一个加数7 7、、被减数-减数=差被减数-差=减数差+减数=被减数8 8、、因数×因数=积积÷一个因数=另一个因数9 9、、被除数÷除数=商被除数÷商=除数商×除数=被除数1010、、总数÷总份数=平均数1111、和差问题的公式、和差问题的公式(和+差)÷2=大数 (和-差)÷2=小数1212、和倍问题、和倍问题和÷(倍数-1)=小数小数×倍数=大数 (或者 和-小数=大数)1313、差倍问题、差倍问题差÷(倍数-1)=小数小数×倍数=大数 (或 小数+差=大数)Word完美格式可编辑版1414、相遇问题、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间1515、浓度问题、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量1616、利润与折扣问题、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)第二章第二章 度量衡度量衡一、概述一、概述1 1、、事物的多少、长短、大小、轻重、快慢等,这些可以测定的客观事物的特征叫做量。
把一个要测定的量同一个作为标准的量相比较叫做计量用来作为计量标准的量叫做计量单位2 2、、数+单位名称=名数只带有一个单位名称的叫做单名数,如:5 小时, 3 千克带有两个或两个以上单位名称的叫做复名数,如:5 小时 6 分,3 千克 500 克56 平方分米=(0.56)平方米 就是单名数转化成单名数 560 平方分米=(5)平方米(60 平方分米) 就是单名数转化成复名数的例子3 3、、高级单位与低级单位是相对的.比如,"米"相对于分米,就是高级单位,相对于千米就是低级单位.二、长度二、长度1 1、什么是长度、什么是长度长度是一维空间的度量2 2、长度常用单位、长度常用单位Word完美格式可编辑版* 公里(km) * 米(m) * 分米(dm) * 厘米(cm) * 毫米(mm) * 微米(um)3 3、单位之间的换算、单位之间的换算1 毫米 =1000 微米、 1 厘米 =10 毫米 、1 分米 =10 厘米、 1 米 =1000 毫米、1 千米=1000 米三、面积三、面积1 1、什么是面积、什么是面积面积,就是物体所占平面的大小对立体物体的表面的多少的测量一般称表面积2 2、常用的面积单位、常用的面积单位* 平方毫米 * 平方厘米 * 平方分米 * 平方米 * 平方千米3 3、面积单位的换算、面积单位的换算 1 平方厘米 =100 平方毫米 1 平方分米=100 平方厘米 1 平方米 =100 平方分米1 公倾 =10000 平方米 1 平方公里 =100 公顷四、体积和容积四、体积和容积1 1、什么是体积、容积、什么是体积、容积①①体积,就是物体所占空间的大小。
②②容积,箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积2 2、常用单位、常用单位①①体积单位: 立方米、 立方分米、 立方厘米②②容积单位: 升、 毫升3 3、单位换算、单位换算①①体积单位 :1 立方米=1000 立方分米 1 立方分米=1000 立方厘米①①容积单位 :1 升=1000 毫升 1 升=1 立方米 1 毫升=1 立方厘米五、质量五、质量1 1、什么是质量、什么是质量 质量,就是表示表示物体有多重2 2、常用单位、常用单位 ::吨(t) 、 千克(kg) 、 克 (g)3 3、常用换算、常用换算 1 吨=1000 千克 1 千克=1000 克六、时间六、时间1 1、什么是时间、什么是时间 是指有起点和终点的一段时间2 2、常用单位、常用单位 世纪、 年 、 月 、 日 、 时 、 分、 秒3 3、单位换算、单位换算* * 1 世纪=100 年(公元 1 年—100 年是第一世纪,公元 1901—2000 是第二十世纪)Word完美格式可编辑版* * 平年一年 365 天,闰年一年 366 天 * 1年 12 个月(一、三、五、七、八、十、十二是大月,大月有 31 天 ; 四、六、九、十一是小月小月,小月有 30 天;平年 2 月有 28 天闰年 2 月有 29 天)* *闰年年份是 4 的倍数,整百年份须是 400 的倍数。
* 1 天= 24 小时 1 小时=60 分 1 分=60 秒七、货币七、货币1 1、什么是货币、什么是货币货币是充当一切商品的等价物的特殊商品货币是价值的一般代表,可以购买任何别的商品2 2、常用单位、常用单位 :元、 角、 分3 3、单位换算、单位换算 :1 元=10 角 1 角=10 分 1 元=100 分常用单位换算常用单位换算1 1、长度单位换算、长度单位换算1 千米=1000 米 1 米=10 分米 1 分米=10 厘米 1 米=100 厘米 1 厘米=10 毫米2 2、面积单位换算、面积单位换算1 平方千米=100 公顷 1 公顷=10000 平方米 1 平方米=100 平方分米1 平方分米=100 平方厘米 1 平方厘米=100 平方毫米3 3、体、体( (容容) )积单位换算积单位换算1 立方米=1000 立方分米 1 立方分米=1000 立方厘米 1 立方分米=1 升1 立方厘米=1 毫升 1 立方米=1000 升4 4、重量单位换算、重量单位换算1 吨=1000 千克 1 千克=1000 克 1 千克=1 公斤5 5、人民币单位换算、人民币单位换算1 元=10 角 1 角=10 分 1 元=100 分6 6、时间单位换算、时间单位换算1 世纪=100 年 1 年=12 月大月(31 天)有:1\3\5\7\8\10\12 月小月(30 天)的有:4\6\9\11 月平年 2 月 28 天, 闰年 2 月 29 天平年全年 365 天, 闰年全年 366 天 1 日=24 小时1 时=60 分 1 分=60 秒 1 时=3600 秒第三章第三章 代数初步知识代数初步知识Word完美格式可编辑版一、用字母表示数一、用字母表示数1 1、用字母表示数的意义和作用、用字母表示数的意义和作用用字母表示数,可以把数量关系简明的表达出来,同时也可以表示运算的结果。
用字母表示数是代数的基本特点既简单明了,又能表达数量关系的一般规律2 2、用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式、用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式⑴⑴ 常见的数量关系①① 路程用 s 表示,速度 v 用表示,时间用 t 表示,三者之间的关系:s=vt v=s/t t=s/v②② 总价用 a 表示,单价用 b 表示,数量用 c 表示,三者之间的关系:a=bc b=a/c c=a/b⑵⑵ 运算定律和性质运算定律和性质加法交换律:a+b=b+a加法结合律: (a+b)+c=a+(b+c)乘法交换律:ab=ba乘法结合律: (ab)c=a(bc)乘法分配律: (a+b)c=ac+bc减法的性质:a-(b+c) =a-b-c⑶⑶ 用字母表示几何形体的公式用字母表示几何形体的公式①① 长方形的长用 a 表示,宽用 b 表示,周长用 c 表示,面积用 s 表示c=2(a+b) s=ab②② 正方形的边长 a 用表示,周长用 c 表示,面积用 s 表示c=4a s=a²③③ 平行四边形的底 a 用表示,高用 h 表示,面积用 s 表示。
s=ah④④ 三角形的底用 a 表示,高用 h 表示,面积用 s 表示s=ah/2⑤⑤ 梯形的上底用 a 表示,下底 b 用表示,高用 h 表示,中位线用 m 表示,面积用 s 表示s=(a+b)h/2 s=mh⑥⑥ 圆的半径用 r 表示,直径用 d 表示,周长用 c 表示,面积用 s 表示Word完美格式可编辑版c=∏d=2∏r s=∏ r²⑦⑦ 扇形的半径用 r 表示,n 表示圆心角的度数,面积用 s 表示s=∏ nr²/360⑧⑧ 长方体的长用 a 表示,宽用 b 表示,高用 h 表示,表面积用 s 表示,体积用 v 表示v=sh s=2(ab+ah+bh) v=abh⑨⑨ 正方体的棱长用 a 表示,底面周长 c 用表示,底面积用 s 表示, 体积用 v 表示.s=6a² v=a³⑩⑩ 圆柱的高用 h 表示,底面周长用 c 表示,底面积用 s 表示, 体积用 v 表示.s 侧=chs 表=s 侧+2s 底 v=sh圆锥的高用 h 表示,底面积用 s 表示, 体积用 v 表示.v=sh/33 3、用字母表示数的写法、用字母表示数的写法①①数字和字母、字母和字母相乘时,乘号可以记作“.” ,或者省略不写;数与数相乘,乘号不能省略。
②②当“1”与任何字母相乘时, “1”省略不写③③数字和字母相乘时,将数字写在字母前面④④在一个问题中,同一个字母表示同一个量,不同的量用不同的字母表示⑤⑤用含有字母的式子表示问题的答案时,除数一般写成分母,如果式子中有加号或者减号,要先用括号把含字母的式子括起来,再在括号后面写上单位的名称4 4、将数值代入式子求值、将数值代入式子求值①①把具体的数代入式子求值时,要注意书写格式:先写出字母等于几,然后写出原式,再把数代入式子求值字母表示的是数,后面不写单位名称②②同一个式子,式子中所含字母取不同的数值,那么所求出的式子的值也不相同二、简易方程二、简易方程1 1、等式:、等式:表示相等关系的式子叫等式2 2、方程:、方程:含有未知数的等式叫做方程判断一个式子是不是方程应具备两个条件:一是含有未知数;二是等式所以,方程一定是等式,但等式不一定是方程方程和算术式不同算术式是一个式子,它由运算符号和已知数组成,它表示未知数方程是一个等式,Word完美格式可编辑版在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立 3 3、方程的解:、方程的解:使方程左右两边相等的未知数的值,叫做方程的解。
4 4、解方程、解方程 ::求方程的解的过程叫做解方程5 5、解方程的方法、解方程的方法⑴⑴ 直接运用四则运算中各部分之间的关系去解如 x-8=12加数+加数=和 一个加数=和-另一个加数被减数-减数=差 减数=被减数-差 被减数=差+减数被乘数×乘数=积 一个因数=积÷另一个因数被除数÷除数=商 除数=被除数÷商 被除数=除数×商⑵⑵ 先把含有未知数 x 的项看作一个数,然后再解如 3x+20=41,先把 3x 看作一个数,然后再解⑶⑶ 按四则运算顺序先计算,使方程变形,然后再解如2.5×4-x=4.2,要先求出2.5×4 的积,使方程变形为 10-x=4.2,然后再解⑷⑷ 利用运算定律或性质,使方程变形,然后再解如: 2.2x+7.8x=20,先利用运算定律或性质使方程变形为(2.2+7.8)x=20,然后计算括号里面使方程变形为 10x=20,最后再解四、列方程解应用题四、列方程解应用题在列方程解文字题时,如果题中要求的未知数已经用字母表示,解答时就不需要写设,否则首先应将所求的未知数设为 x1 1、列方程解应用题的意义、列方程解应用题的意义* 用方程式去解答应用题求得应用题的未知量的方法。
2 2、列方程解答应用题的步骤、列方程解答应用题的步骤①①弄清题意,确定未知数并用 x 表示;②②找出题中的数量之间的相等关系;③③列方程,解方程;④④检查或验算,写出答案3 3、列方程解应用题的方法、列方程解应用题的方法①①综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程这是从部分到整体的一种思维过程,其思考方向是从已知到未知②②分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程这是从整体到部分的一种思维过程,其思考方向是从未知到Word完美格式可编辑版已知4 4、列方程解应用题的范围、列方程解应用题的范围小学范围内常用方程解的应用题:a 一般应用题;b 和倍、差倍问题;c 几何形体的周长、面积、体积计算;d 分数、百分数应用题;e 比和比例应用题五、比和比例五、比和比例1 1、比的意义和性质、比的意义和性质⑴⑴ 比的意义两个数相除又叫做两个数的比 ”是比号,读作“比” 比号前面的数叫做比的前项,比号后面的数叫做比的后项比的前项除以后项所得的商,叫做比值。
同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商比值通常用分数表示,也可以用小数表示,有时也可能是整数比的后项不能是零根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值⑵⑵ 比的性质比的前项和后项同时乘上或者除以相同的数(0 除外) ,比值不变,这叫做比的基本性质⑶⑶ 求比值和化简比求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数根据比的基本性质可以把比化成最简单的整数比 它的结果必须是一个最简比, 即前、 后项是互质的数⑷⑷ 比例尺图上距离:实际距离=比例尺要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离⑸⑸ 按比例分配在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配这种分配的方法通常叫做按Word完美格式可编辑版比例分配方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少2 2、比例的意义和性质、比例的意义和性质⑴⑴ 比例的意义表示两个比相等的式子叫做比例组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项⑵⑵ 比例的性质在比例里,两个外项的积等于两个两个内向的积这叫做比例的基本性质⑶⑶ 解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项求比例中的未知项,叫做解比例3 3、正比例和反比例、正比例和反比例⑴⑴ 成正比例的量两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系用字母表示 y/x=k(一定)⑵⑵ 成反比例的量两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系用字母表示 x×y=k(一定)4 4、比和比例应用题、比和比例应用题⑴⑴ 在工业生产和日常生活中,常常要把一个数量按照一定的比例来进行分配,这种分配方法通常叫“按比例分配” ⑵⑵ 按比例分配的有关习题,在解答时,要善于找准分配的总量和分配的比,然后把分配的比转化成分数或份数来进行解答⑶⑶ 正、反比例应用题的解题策略①①审题,找出题中相关联的两个量②②分析,判断题中相关联的两个量是成正比例关系还是成反比例关系。
③③设未知数,列比例式Word完美格式可编辑版④④解比例式⑤⑤检验,写答语第四章第四章 几何的初步知识几何的初步知识一、线和角一、线和角1 1、线、线⑴⑴ 直线直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线⑵⑵ 射线射线只有一个端点;长度无限⑶⑶ 线段线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短⑷⑷ 平行线在同一平面内,不相交的两条直线叫做平行线两条平行线之间的垂线长度都相等⑸⑸ 垂线两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线 ,相交的点叫做垂足从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离2 2、角、角⑴⑴ 从一点引出两条射线,所组成的图形叫做角这个点叫做角的顶点,这两条射线叫做角的边⑵⑵ 角的分类①①锐角:小于 90°的角叫做锐角②②直角:等于 90°的角叫做直角③③钝角:大于 90°而小于 180°的角叫做钝角④④平角:角的两边成一条直线,这时所组成的角叫做平角平角 180°⑤⑤周角:角的一边旋转一周,与另一边重合周角是 360°Word完美格式可编辑版二、平面图形二、平面图形1 1、三角形、三角形⑴⑴ 特征:由三条线段围成的图形;内角和是 180 度;三角形具有稳定性;从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高,一个三角形有三条高。
⑵⑵ 计算公式:s=ah/2⑶⑶ 分类①①按角分A、锐角三角形 :三个角都是锐角B、直角三角形 :有一个角是直角等腰三角形的两个锐角各为 45 度,它有一条对称轴C、钝角三角形:有一个角是钝角②②按边分A、不等边三角形:三条边长度不相等B、等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴C、等边三角形:三条边长度都相等;三个内角都是 60 度;有三条对称轴2 2、四边形、四边形⑴⑴ 特征:①①四边形是由四条线段围成的图形②②任意四边形的内角和是 360 度③③只有一组对边平行的四边形叫梯形④④两组对边分别平行的四边形叫平行四边形,它容易变形长方形、正方形是特殊的平行四边形;正方形是特殊的长方形⑵分类⑵分类①①长方形长方形A A、、特征:对边相等,4 个角都是直角的四边形有两条对称轴B B、、计算公式:c=2(a+b) s=ab②②正方形正方形A A、、特征:四条边都相等,四个角都是直角的四边形有 4 条对称轴B B、、计算公式:c=4a s=a²③③平行四边形平行四边形A A、、特征:两组对边分别平行的四边形;相对的边平行且相等;对角相等;相邻的两个角的度数之和Word完美格式可编辑版为 180 度;平行四边形容易变形。
B B、、计算公式:s=ah④④梯形梯形A A、、特征:只有一组对边平行的四边形;中位线等于上下底和的一半;等腰梯形有一条对称轴B B、、计算公式:s=(a+b)h/2=mh3 3、圆、圆⑴⑴ 圆的认识圆是平面上的一种曲线图形圆中心的一点叫做圆心一般用字母 o 表示半径:连接圆心和圆上任意一点的线段叫做半径一般用 r 表示在同一个圆里,有无数条半径,每条半径的长度都相等通过圆心并且两端都在圆上的线段叫做直径一般用 d 表示同一个圆里有无数条直径,所有的直径都相等同圆或等圆的直径都相等同一个圆里,直径等于两个半径的长度,即 d=2r圆的大小由半径决定 圆有无数条对称轴圆心确定圆的位置,半径确定圆的大小⑵⑵ 圆的画法把圆规的两脚分开,定好两脚间的距离(即半径) ;把有针尖的一只脚固定在一点(即圆心)上;把装有铅笔尖的一只脚旋转一周,就画出一个圆⑶⑶ 圆的周长围成圆的曲线的长叫做圆的周长把圆的周长和直径的比值叫做圆周率用字母∏表示⑷⑷ 圆的面积:圆所占平面的大小叫做圆的面积⑸⑸ 计算公式:d=2r r=d/2 c=∏d c=2∏r s=∏r²4 4、扇形、扇形⑴⑴ 扇形的认识一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
半圆与直径的组合也是扇形) 显然,是由圆周的一部分与它所对应的圆心角围成圆上 AB 两点之间的部分叫做弧,读作“弧 AB” Word完美格式它可编辑版顶点在圆心的角叫做圆心角在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关扇形有一条对称轴,是轴对称图形⑵⑵ 计算公式:s=n∏r²/3605 5、环形、环形⑴⑴特征:由两个半径不相等的同心圆相减而成,有无数条对称轴⑵⑵ 计算公式:s=∏(R²-r²)6 6、轴对称图形、轴对称图形⑴⑴ 特征①①如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形折痕所在的这条直线叫做对称轴②②线段、角、等腰三角形、长方形、正方形等都是轴对称图形,他们的对称轴条数不等:正方形有 4 条对称轴, 长方形有 2 条对称轴等腰三角形有 2 条对称轴,等边三角形有 3 条对称轴等腰梯形有一条对称轴,圆有无数条对称轴菱形有 4 条对称轴,扇形有一条对称轴三、立体图形三、立体图形(一)长方体(一)长方体1 1、特征、特征六个面都是长方形(有时有两个相对的面是正方形) 相对的面面积相等,12 条棱相对的 4 条棱长度相等有 8 个顶点相交于一个顶点的三条棱的长度分别叫做长、宽、高。
两个面相交的边叫做棱三条棱相交的点叫做顶点把长方体放在桌面上,最多只能看到三个面长方体或者正方体 6 个面的总面积,叫做它的表面积2 2、计算公式:、计算公式:s=2(ab+ah+bh) V=sh V=abhWord完美格式可编辑版(二)正方体(二)正方体1 1、特征、特征六个面都是正方形六个面的面积相等12 条棱,棱长都相等有 8 个顶点正方体可以看作特殊的长方体2 2、计算公式、计算公式:S 表=6a² v=a³(三)圆柱(三)圆柱1 1、圆柱的认识、圆柱的认识圆柱的上下两个面叫做底面圆柱有一个曲面叫做侧面圆柱两个底面之间的距离叫做高 进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4 或者比 4 小,都要向前一位进 1这种取近似值的方法叫做进一法2 2、计算公式:、计算公式:s 侧=ch s 表=s 侧+s 底×2 v=sh/3(四)圆锥(四)圆锥1 1、圆锥的认识、圆锥的认识圆锥的底面是个圆,圆锥的侧面是个曲面从圆锥的顶点到底面圆心的距离是圆锥的高测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。
把圆锥的侧面展开得到一个扇形2 2、计算公式、计算公式:v= sh/3(五)球(五)球1 1、认识、认识Word完美格式可编辑版球的表面是一个曲面,这个曲面叫做球面球和圆类似,也有一个球心,用 O 表示从球心到球面上任意一点的线段叫做球的半径,用 r 表示,每条半径都相等通过球心并且两端都在球面上的线段,叫做球的直径,用d 表示,每条直径都相等,直径的长度等于半径的 2 倍,即 d=2r2 2、计算公式:、计算公式:d=2r四、周长和面积四、周长和面积1 1、、平面图形一周的长度叫做周长2 2、、平面图形或物体表面的大小叫做面积3 3、、常见图形的周长和面积计算公式小学数学图形计算公式小学数学图形计算公式1 1、正方形、正方形 ((C C:周长:周长 S S:面积:面积 a a:边长):边长)周长=边长×4 C=4a面积=边长×边长 S=a×a2 2、正方体、正方体 ((V:V:体积体积 a: a:棱长棱长 ))表面积=棱长×棱长×6 S 表=a×a×6体积=棱长×棱长×棱长 V=a×a×a3 3、长方形(、长方形( C C:周长:周长 S S:面积:面积 a a:边长):边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽 S=ab4 4、长方体、长方体 ((V:V:体积体积 s: s:面积面积 a: a:长长 b: b: 宽宽 h: h:高)高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高 V=abh5 5、三角形、三角形 ((s s:面积:面积 a a:底:底 h h:高):高)面积=底×高÷2 s=ah÷2三角形高=面积 ×2÷底三角形底=面积 ×2÷高6 6、平行四边形、平行四边形 ((s s:面积:面积 a a:底:底 h h:高):高)面积=底×高 s=ahWord完美格式可编辑版7 7、梯形、梯形 ((s s:面积:面积 a a:上底:上底 b b:下底:下底 h h:高):高)面积=(上底+下底)×高÷2 s=(a+b)× h÷28 8、圆形、圆形 ((S S:面积:面积 C C:周长:周长лл d= d=直径直径 r= r=半径)半径)(1)周长=直径×л =2×л ×半径 C=л d=2л r(2)面积=半径×半径×л9 9、圆柱体、圆柱体 ((v:v:体积体积 h: h:高高 s s:底面积:底面积 r: r:底面半径底面半径 c: c:底面周长)底面周长)(1)侧面积=底面周长×高=ch(2л r 或л d)(2)表面积=侧面积+底面积×2 (3)体积=底面积×高(4)体积=侧面积÷2×半径1010、圆锥体、圆锥体 ((v:v:体积体积 h: h:高高 s s:底面积:底面积 r: r:底面半径)底面半径)体积=底面积×高÷3第五章第五章 简单的统计简单的统计一、统计表一、统计表(一)意义(一)意义 * 把统计数据填写在一定格式的表格内,用来反映情况、说明问题,这样的表格就叫做统计表。
二)组成部分(二)组成部分 * 一般分为表格外和表格内两部分表格外部分包括标的名称,单位说明和制表日期;表格内部包括表头、横标目、纵标目和数据四个方面三)种类(三)种类* 单式统计表:只含有一个项目的统计表 复式统计表:含有两个或两个以上统计项目的统计表 百分数统计表:不仅表明各统计项目的具体数量,而且表明比较量相当于标准量的百分比的统计表四)制作步骤(四)制作步骤1 1、搜集数据、搜集数据2 2、整理数据:、整理数据:Word完美格式可编辑版要根据制表的目的和统计的内容,对数据进行分类3 3、设计草表:、设计草表:要根据统计的目的和内容设计分栏格内容、分栏格画法,规定横栏、竖栏各需几格,每格长度4 4、正式制表:、正式制表:把核对过的数据填入表中,并根据制表要求,用简单、明确的语言写上统计表的名称和制表日期二、统计图二、统计图(一)意义(一)意义 * 用点线面积等来表示相关的量之间的数量关系的图形叫做统计图二)分类(二)分类1 1、条形统计图、条形统计图用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直线按照一定的顺序排列起来优点:很容易看出各种数量的多少。
注意:画条形统计图时,直条的宽窄必须相同取一个单位长度表示数量的多少要根据具体情况而确定;复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例制作条形统计图的一般步骤:(1)根据图纸的大小,画出两条互相垂直的射线2)在水平射线上,适当分配条形的位置,确定直线的宽度和间隔3)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少4)按照数据的大小画出长短不同的直条,并注明数量2 2、折线统计图、折线统计图用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定制作折线统计图的一般步骤:(1)根据图纸的大小,画出两条互相垂直的射线Word完美格式可编辑版(2)在水平射线上,适当分配折线的位置,确定直线的宽度和间隔3)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少4)按照数据的大小描出各点,再用线段顺次连接起来,并注明数量3 3、扇形统计图、扇形统计图用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。
优点:很清楚地表示出各部分同总数之间的关系制扇形统计图的一般步骤:(1)先算出各部分数量占总量的百分之几2)再算出表示各部分数量的扇形的圆心角度数3)取适当的半径画一个圆,并按照上面算出的圆心角的度数,在圆里画出各个扇形4)在每个扇形中标明所表示的各部分数量名称和所占的百分数,并用不同颜色或条纹把各个扇形区别开Word完美格式。
