
九年级数学上册《1.3 平行四边形、矩形、菱形、正方形的性质与判定(第8课时)》学案.doc
3页《1.3 平行四边形、矩形、菱形、正方形的性质与判定(第8课时)》学案 【学习目标】1、A.根据平行四边形、矩形、菱形与正方形之间的关系,归纳出正方形的判定定理2、A.能运用正方形的判定定理进行简单的计算与证明3、B.能运用正方形的性质定理与判定定理进行比较简单的综合推理与证明4、C.在探究与证明正方形判定定理的过程中,进一步体会一般与特殊的辩证关系,提高分析问题与解决问题的能力【学习重、难点】重点:正方形判定的应用难点:通过引导合情推理和演绎推理,提高逻辑思维水平【情境创设】正方形是特殊的矩形和特殊的菱形,那么什么样的矩形是正方形?什么样的菱形是正方形?【合作交流】为了活跃学生思维,可以提出以下问题:①对角线相等的菱形是正方形吗?为什么?②对角线互相垂直的矩形是正方形吗?为什么?③对角线垂直且相等的四边形是正方形吗?为什么?④四条边都相等的四边形是正方形吗?为什么?⑤说“四个角相等的四边形是正方形”对吗? 判定方法(1)矩形、菱形法:先判定四边形是矩形,再判定这个矩形是菱形(一组邻边相等的矩形);或者先判定四边形是菱形,再判定这个菱形也是矩形(有一个角是直角的菱形)。
2)定义法:有一组邻边相等且有一个角是直角的平行四边形是正方形,这是直接利用定义来判定的如何用直尺和圆规作正方形?如何把长方形纸片通过折纸,剪出一个正方形纸片?【典题选讲】例1 A.已知:如图,E、F、G、H分别是正方形各边的中点,AF、BG、CH、DE分别两两相交于点A’、B’、C’、D’ 求证:四边形是正方形是否还有其他证明方法?与同学交流)B.若点E、F、G、H分别在正方形ABCD的各边上,且AE=BF=CG=DH,则四边形A’B’C’D’还是正方形吗?证明你的结论例2:A.已知:如图,点A'、B'、C'、D'分别是正方形ABCD四条边上的点,并且AA'=BB'=CC'=DD'求证:四边形A‘B’C‘D’是正方形例3、B.如图,在Rt△ABC与 Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于点G,过点A作AE∥DB交CB的延长线于点E,过点B作BF∥CA 交DA的延长线于点F,AE,BF相交于点H.(1)图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)(2)证明四边形AHBG是菱形;(3)若使四边形AHBG是正方形,还需在Rt△ABC 的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)DGCBEHFA【课堂练习】1.A.用两个全等的直角三角形拼下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形;一定可以拼成的是________(只填序号). 2、A.如图6所示,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O.若不增加任何字母与辅助线,要使得四边形ABCD是正方形,则还需增加的一个条件是 . 3、A.如图,△ABC中,∠ACB=90°,CD平分∠ACB,DE⊥AC,DF⊥BC,E、F是垂足。
求证:四边形DECF是正方形4、B.已知:如图,在Rt△ABC中,∠ACB=90°,CD是角平分线,DE⊥AC,DF⊥BC,垂足分别为E、F求证:四边形ECFD是正方形第5题图)5、C.如图,将一张长方形纸片对折两次,然后剪下一个角,打开.如果要剪出一个正方形,那么剪口线与折痕成( )A. B. C. D.【学习体会】1、特殊的图形具有一般图形的性质和它的特殊性质2、一个图形的形状越特殊,它的判定需要的条件就越多3、判定一个四边形是正方形的思考方法有哪些?3。












