好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

合理订货问题的优化模型.doc

19页
  • 卖家[上传人]:F****n
  • 文档编号:98776530
  • 上传时间:2019-09-14
  • 文档格式:DOC
  • 文档大小:2MB
  • / 19 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 数学建模课程论文 论文题目 合理订货问题的优化模型学 院 信息科学与工程学院专 业 电子信息科学与技术 在清洗液中硅表面为负电位有些颗粒也为负电位,由于两者的电的排斥力作用可防止粒子向晶片表面吸附,但也有部分粒子表面是正电位,由于两者电的吸引力作用,粒子易向晶片表面吸附合理订货问题的优化模型摘 要 本文讨论了如何为某商业公司制定一个合理的订货方案以使所花费用最少的问题问题一是在一定约束条件下以所花费用为目标函数的订货优化问题通过合理假设把一年怎样组织订货的问题转化成一个订货周期内的订货问题在一个订货周期内,假设不允许缺货,目标函数总费用分为五个部分:购买物资费用、从工厂到仓库的运费、库存费、从仓库到分店的运费及订货费订货费由题目已知,其余费用均可通过相应变量之间的线性运算得到,再根据题目条件给出约束条件,从而建立一个多元线性优化模型根据经济订货批量公式等计算出订货周期、订货次数、每次订货量。

      利用Lingo软件求解出每次订货的总费用为.18元,订货次数为16次,每次订货量2156件,并给出具体的订货方案(见表8、9、10、11)假设进行销售时允许缺货,虽然会造成一定损失,但相应的存储费也会减少,这是符合现实生活的在模型一的基础上建立适当模型,目标函数即总费用除了原来的五个部分,还加上由于缺货产生的费用,约束条件只改变订货周期与取货周期的关系利用Lingo软件求解出每次订货的总费用为.5元,订货次数为12次,每次订货量1706件问题二是在问题一的基础上改变了工厂生产物资的单价,可利用价格有折扣的存储模型的相关知识建立模型二,求解出在工厂订购每种物资的最佳经济批量,同时得到新的单价表(见表12),代入模型一中利用Lingo软件求解,每次订货的总费用变为.42元,订货次数和每次订货量没变,并求出新的订货方案(见表13、14、15、16)在以上模型基础上,还可以考虑订货期有提前的情况下如何建立模型的问题,以及可以考虑如何选择最佳运输方案来降低成本该模型能够代表实际应用中的许多问题,如其他方面的联合订货销售问题、选址问题、物流管理、最大利润问题等同时,规划模型在工业、商业、交通运输、工程技术、行政管理等领域有着广泛的应用。

      关键词 订货方案;多元线性优化模型;价格有折扣的存储模型;最佳经济批量一. 问题重述随着市场经济的快速发展,有效的供应链管理是降低成本获得市场竞争优势的重要手段之一在满足生产和需求的同时,为了使所花费用最少,需要合理地组织订货方案,从而为企业创造更大的效益现有某商业公司管理着5 个仓库()和8个分店(),主要经营10种物资,而这些物资全部向3个工厂()进货公司的工作流程是根据8个分店的销售需要,先向工厂订货,然后将各种物资运送到仓库,再由仓库运送到分店进行销售分店只消耗物资,不储存物资已知数据有:各工厂生产10种物资的年产量(见附录表1);各种物资单价(见附录表2);每个工厂到每个仓库的运输单价(见附录表3);每个仓库的容量(见附录录4);各种物资的库存费与单位占用库容(见附录表5);5个仓库到8个分店的运输单价(见附录表6);8个分店对物资的年需求量(见附录表7);公司每次订货产生的其它各种花费即订货费为1万元;一次订货可使用的流动资金上限为100万元如果进行销售时允许缺货,缺货的损失费是存储费的2倍试建立适当模型,解决以下三个问题:问题一:公司一年之中应该怎样组织订货(各种物资的订货次数与订货量以及运输方案)使得总的花费最少?问题二:如果A1工厂有订购优惠活动,物资订购量每增加30件订购单价就会降低5元,最多优惠15元,公司又应该怎样组织订货?二. 问题分析问题一是在一定约束条件下以所花费用为目标函数的订货优化问题。

      通过对题目的分析,可作出如下假设:订货周期和取货周期固定,一次订货存在仓库的货物刚好可供各分店取次;每次订购物资数量和种类相同;每次取货时各分店在同一时间到仓库取货,且从各仓库所取物资数量和种类相同由此订货和取货原理可把一年怎样组织订货的问题转化成一个订货周期内的订货问题在一个订货周期内,假设不允许缺货,目标函数总费用分为五个部分:购买物资费用、从工厂到仓库的运费、库存费、从仓库到分店的运费及订货费订货费由题目条件已知,其余费用均可通过相应变量之间的线性运算得到再根据一次订货的流动资金上限、各工厂的年产量、各仓库的库容量、各分店的需求量等已知条件列出约束条件,从而建立一个多元线性优化模型根据经济订货批量公式(EOQ公式)可计算出订货周期对前面模型的改进与推广,因此可以假设进行销售时允许缺货,虽然会造成一定损失,但相应的存储费也会减少,这是符合现实生活的可在模型一的基础上建立相应多元线性规划模型,目标函数即总费用除了原来的五个部分,还需加上由于缺货产生的费用,约束条件只改变订货周期与取货周期的关系并且各工厂生产物资的单价按模型二求得的来使用问题二是在问题一的基础上改变了某个条件,即工厂有订购优惠活动,物资订购量每增加30件订购单价就会降低5元,最多优惠15元,可利用价格有折扣的存储模型的相关知识建立模型二,先求解出在工厂订购种物资的最佳经济批量,再进一步算出该从、工厂订购物资的数量。

      同时得到新的单价表,代入问题一的模型中可求出新的订货方案三. 基本假设1. 假设年初时5个仓库存储10种物资的数量均为0,各分店刚刚开始营业;2. 假设每次订货时从3个工厂各订一定量的各种物资且订购物资数量和种类相同;3. 假设各分店的需求量稳定,并且能够预测;4.假设每次取货时各分店在同一时间到仓库取货,且从各仓库所取物资数量和种类相同;5. 假设物资从工厂运到仓库和从仓库运到分店的运输时间忽略不计;6.假设每次订货并把物资存储到仓库后各分店就立刻从各仓库取货,间隔时间忽略不计;7.假设一年只有365天,闰年情况不考虑;8.假设订货周期和取货周期固定,一次订货存在仓库的货物刚好可供各分店取n次;9. 假设各种物资一年内的订货次数都一样;10.假设各分店不存储物资;11.假设物资出厂单价、运输单价、库存费等在这一年中均无变化;12.假设货物体积可以相加,仓库均可以充分了利用;13.假设商业公司订货都是先考虑通过最佳经济批量来减少花费再考虑如何安排运输方案以减少花费四. 符号说明:第个工厂;:第个仓库;:第个分店;:第种物资;:每次第种物资从第个仓库运到第个分店的数量;:每次第种物资从第个工厂运到第个仓库的数量;:从第个工厂订购第种物资的数量;:第个工厂生产第种物资的单价;:物资从第个工厂运输到第个仓库的单位运价;:物资从第个仓库运输到第个分店的单位运价;:第个工厂生产第种物资的数量;:第个分店对第种物资的需求量;: 第种物资的单位体积;: 第个仓库的总容量;: 第种物资的单位库存费;: 取货周期;: 一个订货周期内取货次数;: 订货周期; : 一个订货周期内第种物资的库存费;: 一个订货周期内总费用;:一个订货周期内购买物资费用;:一个订货周期内从工厂到仓库的运费;:一个订货周期内库存费; :一个订货周期内从仓库到分店的运费;:一个订货周期内订购费;: 每次订货花的其他费用;: 每种物资每天的存储费;: 每种物资平均每天的需求量;: 每次的订货量;: 一个订货周期内存储第种物资的费用;:第种物资的需求率;:平均每种物资的订货费;:每天每件物资的缺货损失费;五. 模型建立、求解及结果分析有关物资的订购、贮存及运输问题,是经济管理和生产管理中的常见问题。

      在满足生产和需求的同时,为了使成本降至最低,需要合理地组织订货方案,从而为企业创造更大的效益5.1不允许缺货的订货优化模型一 通过对题目的分析,可作如下假设:订货周期和取货周期固定,一次订货存在仓库的货物刚好可供各分店取次;每次订购物资数量和种类相同;每次取货时各分店在同一时间到仓库取货,且从各仓库所取物资数量和种类相同由此订货和取货原理,可把一年怎样组织订货的问题转化成一个订货周期内的组织订货取货问题5.1.1目标函数的提出在一个订货周期内,目标函数是总费用总费用分为五个部分:购买物资费用、从工厂到仓库的运费、库存费、从仓库到分店的运费以及订货费,即: (1)设每次从第个工厂订购第种物资的数量为,则购买物资费用为: (2)设每次第种物资从第个工厂运到第个仓库的数量为,则从工厂运到仓库的物资总数量为,故从工厂到仓库的运费为: (3)设一个订货周期内第种物资的库存费为,则库存费为:设每次将第种物资从第个仓库运到第个分店的数量为,则从工厂运到仓库的物资总数量为,从仓库运到分店的物资总数量为。

      又一个订货周期内共取货次,且第次刚好将全部物资取完,据此可得:经过整理得库存费为: (4)每次从仓库运到分店的物资总数量为,且一个订货周期内总共取次货,故从仓库到分店的运费为: (5)根据题目已知条件知订货费为: (6)5.1.2约束条件的提出考虑一次订货可使用的流动资金上限为100万元,一个订货周期内的总费用不能超过此上限,即: (7) 每个仓库的库容量有限,存放在仓库的物资总体积不能超过该仓库的库容量,而一次订货存放在仓库的物资总数量为,故有: (8)订货周期为,取货周期为,且一个订货周期内总共取次货,故有: (9)订货次数为,一年之中从工厂订购物资总数量不能超过该厂生产该物资的年产量,即: (10)一次订货从工厂运到所有仓库的物资数量等于从该厂订购该种物资的数量,即: (11)一次订货从仓库运到所有分店的物资数量等于运到该厂的 该种 物资数量 ,即: (12)其中表示每次从仓库运到所有分店的物资数量。

      所有仓库运到分店的物资数量等于一个取货周期内该分店对该种物资的总需求量,即: (13)其中表示分店对物资数量需求量 由自然条件可知,订货周期,取货周期,每次从第m个工厂订购第i种物资的数量,每次第i种物资从第m个工厂运到第j个仓库的数量,每次将第i种物资从第j个仓库运输到第k个分店的数量均大于或等于零,且为整数,即 (14)5.1.3模型的提出、求解及结果分析根。

      点击阅读更多内容
      相关文档
      高等学校学生手册.doc 2025年区教育系统招聘编外教师储备人才事业单位考试押题.docx 2025年秋季青岛版三年级数学上册认识轴对称现象教学课件.pptx 2025年秋季青岛版三年级数学上册用乘法估算解决问题教学课件.pptx 2025年秋季青岛版三年级数学上册两、三位数乘一位数的笔算(不进位)教学课件.pptx 2025年秋季青岛版三年级数学上册1200张纸有多厚教学设计范文.docx 2025年秋季青岛版三年级数学上册多位数除以一位数教学课件.pptx 2025年秋季青岛版三年级数学上册认识平移、旋转现象教学课件.pptx 2025年秋季青岛版三年级数学上册多位数乘一位数教学设计范本.docx 2025年秋季青岛版三年级数学上册认识平移与旋转教学设计范文.docx 2025年秋季青岛版三年级数学上册乘数中间有0或末尾有0的乘法教学课件.pptx 2025年秋季青岛版三年级数学上册两位数乘一位数的笔算(进位)教学课件.pptx 2025年秋季青岛版三年级数学上册《两、三位数乘一位数的笔算(不进位)》教学设计与意图.docx 2025年秋季青岛版三年级数学上册我学会了吗教学课件.pptx 2025年连云港市妇幼保健院招聘专业技术人员考试笔试试题.docx 2025年深圳市大鹏新区发展和财政局招聘考试笔试试卷.docx 2025年绵阳市梓潼县财政投资评审中心招聘考试试题.docx 2025年来宾市妇幼保健院招聘考试笔试试题.docx 2025年无极县教育系统招聘教师考试笔试试卷.docx 2025年灵山县第三中学调配教师考试笔试试题.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.