
福建省泉港区第二中学2025学年数学高二上期末质量跟踪监视试题含解析.doc
20页福建省泉港区第二中学2025学年数学高二上期末质量跟踪监视试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.某班进行了一次数学测试,全班学生的成绩都落在区间内,其成绩的频率分布直方图如图所示,若该班学生这次数学测试成绩的中位数的估计值为,则的值为( )A. B.C. D.2.在等差数列中,,,则使数列的前n项和成立的最大正整数n=( )A.2021 B.2022C.4041 D.40423.设椭圆()的左焦点为F,O为坐标原点.过点F且斜率为的直线与C的一个交点为Q(点Q在x轴上方),且,则C的离心率为( )A. B.C. D.4.已知a,b为不相等实数,记,则M与N的大小关系为()A. B.C. D.不确定5.在直三棱柱中,底面是等腰直角三角形,,点在棱上,且,则与平面所成角的正弦值为( )A. B.C. D.6.在等比数列{}中,,,则=()A.9 B.12C.±9 D.±127.已知椭圆与圆在第二象限的交点是点,是椭圆的左焦点,为坐标原点,到直线的距离是,则椭圆的离心率是( )A. B.C. D.8.已知圆与圆相交于A、B两点,则圆上的动点P到直线AB距离的最大值为( )A. B.C. D.9.变量,之间的一组相关数据如表所示:若,之间的线性回归方程为,则的值为()45678.27.86.65.4A. B.C. D.10.若椭圆的短轴为,一个焦点为,且为等边三角形的椭圆的离心率是A. B.C. D.11.直线被圆截得的弦长为()A.1 B.C.2 D.312.在中,B=60°,,,则AC边的长等于( )A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。
13.从编号为01,02,…,60的60个产品中用系统抽样的方法抽取一个样本,已知样本中的前两个编号分别为02,08(编号按从小到大的顺序排列),则样本中最大的编号是_________14.如图,在长方体ABCD﹣A'B'C'D'中,点P,Q分别是棱BC,CD上的动点,BC=4,CD=3,CC'=2,直线CC'与平面PQC'所成的角为30°,则△PQC'的面积的最小值是__15. “第七届全国画院美术作品展”于2021年12月2日至2022年2月20日在郑州美术馆展出.已知某油画作品高2米,宽6米,画的底部离地有2.7米(如图所示).有一身高为1.8米的游客从正面观赏它(该游客头顶E到眼睛C的距离为10),设该游客离墙距离CD为x米,视角为.为使观赏视角最大,x应为___________米.16.甲、乙两名运动员5场比赛得分的茎叶图如图所示,已知甲得分的极差为32,乙得分的平均值为24,则甲、乙两组数据的中位数是______.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)如图,五边形为东京奥运会公路自行车比赛赛道平面设计图,根据比赛需要,在赛道设计时需预留出,两条服务通道(不考虑宽度),,,,,为赛道.现已知,,千米,千米(1)求服务通道的长(2)在上述条件下,如何设计才能使折线赛道(即)的长度最大,并求最大值18.(12分)在中,内角的对边分别是,且(1)求角的大小(2)若,且,求的面积19.(12分)已知函数.(1)讨论的单调性;(2)当a=1时,对于任意的,,都有恒成立,则m的取值范围.20.(12分)如图,在正方体中,E,F,G,H,K,L分别是AB,,,,,DA各棱的中点.(1)求证:E,F,G,H,K,L共面:(2)求证:平面EFGHKL;(3)求与平面EFGHKL所成角的余弦值.21.(12分)如图,在直角梯形中,.直角梯形通过直角梯形以直线为轴旋转得到,且使得平面平面.M为线段的中点,P为线段上的动点(1)求证:;(2)当点P满足时,求证:直线平面;(3)是否存在点P,使直线与平面所成角的正弦值为?若存在,试确定P点的位置;若不存在,请说明理由22.(10分)如图甲是由正方形,等边和等边组成的一个平面图形,其中,将其沿,,折起得三棱锥,如图乙.(1)求证:平面平面;(2)过棱作平面交棱于点,且三棱锥和的体积比为,求直线与平面所成角的正弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1、A【解析】根据已知条件可得出关于、的方程组,解出这两个量的值,即可求得结果.【详解】由题意有,得,又由,得,解得,,有故选:A.2、C【解析】根据等差数列的性质易得,,再应用等差数列前n项和公式及等差中项、下标和的性质可得、,即可确定答案.【详解】因为是等差数列且,,所以,,.故选:C.3、D【解析】连接Q和右焦点,可知|OQ|=,可得∠FQ=90°,由得,写出两直线方程,联立可得Q点坐标,Q点坐标代入椭圆标准方程可得a、b、c关系﹒【详解】设椭圆右焦点为,连接Q,∵,,∴|OQ|=,∴∠FQ=90°,∵,∴,FQ过F(-c,0),Q过(c,0),则,由,∵Q在椭圆上,∴,又,解得,∴离心率故选:D4、A【解析】利用作差法即可比较M与N的大小﹒【详解】因为,又,所以,即故选:A5、C【解析】取AC的中点M,过点M作,且使得,进而证明平面,然后判断出是与平面所成的角,最后求出答案.【详解】如图,取AC的中点M,因为,则,过点M作,且使得,则四边形BDNM是平行四边形,所以.由题意,平面ABC,则平面ABC,而平面ABC,所以,又,所以平面,而所以平面,连接DA,NA,则是与平面所成的角.而,于是,.故选:.6、D【解析】根据题意,设等比数列的公比为,由等比数列的性质求出,再求出【详解】根据题意,设等比数列的公比为,若,,则,变形可得,则,故选:7、B【解析】连接,得到,作,求得,利用椭圆的定义,可求得,在直角中,利用勾股定理,整理的,即可求解椭圆的离心率.【详解】如图所示,连接,因为圆,可得,过点作,可得,且,由椭圆的定义,可得,所以,在直角中,可得,即,整理得,两侧同除,可得,解得或,又因为,所以椭圆的离心率为.故选:B【点睛】本题主要考查了椭圆的定义,直角三角形的勾股定理,以及椭圆的离心率的求解,其中解答中熟记椭圆的定义,结合直角三角形的勾股定理,列出关于的方程是解答的关键,着重考查了推理与计算能力,属于基础题.8、A【解析】判断圆与的位置并求出直线AB方程,再求圆心C到直线AB距离即可计算作答.【详解】圆的圆心,半径,圆的圆心,半径,,,即圆与相交,直线AB方程为:,圆的圆心,半径,点C到直线AB距离的距离,所以圆C上的动点P到直线AB距离的最大值为.故选:A9、C【解析】本题先求样本点中心,再利用线性回归方程过样本点中心直接求解即可.【详解】解:,,所以样本点中心:,线性回归方程过样本点中心,则解得:,故选:C【点睛】本题考查线性回归方程过样本点中心,是简单题.10、B【解析】因为为等边三角形,所以.考点:椭圆的几何性质.点评:椭圆图形当中有一个特征三角形,它的三边分别为a,b,c.因而可据此求出离心率.11、C【解析】利用直线和圆相交所得的弦长公式直接计算即可.【详解】由题意可得圆的圆心为,半径,则圆心到直线的距离,所以由直线和圆相交所得的弦长公式可得弦长为:.故选:C.12、B【解析】根据正弦定理直接计算可得答案.【详解】由正弦定理, ,得 ,故选:B.二、填空题:本题共4小题,每小题5分,共20分。
13、56【解析】根据系统抽样的定义得到编号之间的关系,即可得到结论.【详解】由已知样本中的前两个编号分别为02,08,则样本数据间距为,则样本容量为,则对应的号码数,则当时,x取得最大值为56故答案为:5614、8【解析】设三棱锥C﹣C′PQ的高为h,CQ=x,CP=y,由体积法求得的关系,由直线CC’与平面C’PQ成的角为30°,得到xy≥8,再由VC﹣C′PQ=VC′﹣CPQ,能求出△PQC'的面积的最小值【详解】解:设三棱锥C﹣C′PQ的高为h,CQ=x,CP=y,由长方体性质知两两垂直,所以,,,,,所以,由得,所以,∵直线CC’与平面C’PQ成的角为30°,∴h=2,∴,,∴xy≥8,再由体积可知:VC﹣C′PQ=VC′﹣CPQ,得,S△C′PQ=xy,∴△PQC'的面积的最小值是8故答案为:815、【解析】设,进而得到,,从而求出,再利用基本不等式即可求得答案.【详解】设,则,,所以,当且仅当时取“=”.所以该游客离墙距离为米时,观赏视角最大.故答案为:.16、【解析】先由极差以及平均数得出,进而得出中位数.【详解】由可得,,,因为乙得分的平均值为24,所以,所以甲、乙两组数据的中位数是.故答案为:三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤17、(1)服务通道的长为千米(2)时,折线赛道的长度最大,最大值为千米【解析】(1)先在中利用正弦定理得到长度,再在中,利用余弦定理得到即可;(2)在中利用余弦定理得到,再根据基本等式求解最值即可.【小问1详解】在中,由正弦定理得:,在中,由余弦定理,得,即解得或(负值舍去)所以服务通道的长为千米【小问2详解】在中,由余弦定理得:,即,所以因为,所以,所以,即(当且仅当时取等号)即当时,折线赛道的长度最大,最大值为千米18、(1);(2)【解析】(1)根据,通过余弦定理求解.(2)根据,通过正弦定理,把角转化为边得,再根据,得.再代入的面积公式求解.【详解】(1)∵,∴由余弦定理得,又,∴.(2)∵,∴由正弦定理得,∵,∴,又,∴∴面积【点睛】本题主要考查余弦定理和正弦定理的应用,还考查了运算求解的能力,属于中档题.19、(1)答案见解析;(2).【解析】(1)由题可得,利用导数与单调性关系分类讨论即得;(2)由题可得,利用函数的单调性及极值求函数最值即得.【小问1详解】由题可得的定义域为,若,恒有,当时,,当时,,∴在上单调递增,在上单调递减,若,令,得,若,恒有在上单调递增,若,当时,;当时,,故在和上单调递增,在上单调递减,若,当时,;当时,,故在和上单调递增,在上单调递减;综上所述,当,在上单调递增,在上单调递减,当,在和上单调递增,在上单调递减,当,在上单调递增,当,在和上单调递增,在上单调递减;【小问2详解】由(1)知,时,在和上单调递增,在上单调递减;当a=1时,,,。
