
奥贝尔氧化沟的特性分析与理论探讨环境工程论文下载.doc
12页奥贝尔氧化沟的特性分析与理论探讨摘要:木文主要是进行了奥贝尔氧化沟的特性分析与理论探讨 关键词:奥贝尔氧化沟特性分析理论探讨1、1背景由于氧化沟工艺运行管理简单易行,运行效果相对稳定,更适合我国的一些中小城镇, 而奥贝尔氧化沟道优良的脱氮效果以及溶解氧的分布形式,因其不同于传统的氧段+好氧段 的活性污泥脱氮系统,而逐渐成为业内人士关注的焦点为什么奥贝尔氧化沟的外沟道会有如此良好的脱氮效果?究竟是由于低氧条件下同 时存在的硝化、反硝化,还是由于外沟道中交替出现的好氧、缺氧环境,抑或rti于极高的混 合液冋流比及其他原因?对此,人们提出了 3种可能的机理:•《观混合方式造成的缺氧好氧环境:即在高浓度有机物中,微生物对食物的快速好 氧降解导致高氧条件下的缺氧环境的形成这就是宏观上的“同时硝化反硝化”,它既可以在 推流式曝气池,即在与奥贝尔外沟道相似的缺氧、好氧区中实现,又可以在完全混合式的曝气池中实现(即低溶解氧条件下的“同时硝化反硝化”)•微环境的缺氧与好氧:就每一个微小的活性污泥絮体而言,其外围暴露在好氧条件 下,而其内部则处于缺氧条件下•新型特种微生物:即存在一种我们以前并未认识到的全新微生物能够在特定条件下 去除营养物。
正是在这种背景下,木文根据IAWQ提出的活性污泥数学模型的原理,通过数学模拟 的方法试图对此进行合理的解释1.2几个令人困惑的问题与研究的目的在此背景下,儿个相关的问题随Z而生•奥贝尔氧化沟外沟道的脱氮作用毋庸置疑,但其影响因素究竟是哪些?能否推而广 Z,在单沟式氧化沟中采川与奥贝尔氧化外沟道相同的布置,实现优势T艺的改良与变种?•外沟道的脱氮和碳氧化功能占总量的百分比是多少?外沟、中沟、内沟的溶解氧的 分布方式的不同又会有哪些影响?与此相关的二沉池的设计又要注意哪些问题?•更深入一些,在奥贝尔氧化沟外沟道内,点源与面源曝气的区别及各白的优势是什么?正是这些疑问构成了本文研究的li的1.3研究工具与方法这些问题的产生很可能是各种生物、物理、化学因素交差、协同作用的综合结果,由于检 测手段的限制,无法完全通过试验检测的方法进行令人信服的解释目前rti国际水质协会推 出的活性污泥数学模型以微生物反应动力学为基础,综合考虑了各种可能的活性污泥工艺的 影响因素,因而可在一•定条件下,在时间和空间范围内模拟污水处理厂的真实运行情况木 文拟采用数学模拟与试验测试相结合的方法,根据低负荷长泥龄运行和高负荷短泥龄运行两 种条件,对由奥贝尔氧化沟产生并延伸出的上述问题进行解释。
数学模拟以北京燕山石化公司牛口峪污水处理厂的工程测试数据为依据,以活性污泥 1号模型为基础,采用ASTM计算机程序上机计算2. 牛口峪污水处理厂•工程测试简介2」工艺设计参数牛口峪污水处理厂是北京燕山石化公司30万吨乙烯改扩建T稈的配套环保项日,主要处理 化工一厂的工业废水、化工二厂、化工三厂的部分工业废水及少量生活污水该厂采用二级 生物处理工艺,生物处理工段为奥贝尔氧化沟,设计规模为60000m3/d,1994年12月投产 生物处理工段设计为平行的两组,每组包括1个奥贝尔氧化沟和2个二沉池单个氧化沟的 主要设计参数如下:设计进水流量1250m3/h泥龄35d有效池容1733m3MLSS 4000mg/LMLVSS 3200mg/L容积分配夕卜:中:内=56: 26: 18溶解氧分布夕卜中•内=0-l-2mg/L每个氧化沟设32组曝气转碟,夕卜、中、内沟各安装8组曝气器,氧化沟平面布置如图2.1.1所示2.2测试期间的进出水水质与T艺运行参数 测试期间氧化沟的进出水水质如下表:表221测试期问氧化沟原水水质CODmg/L BODmg/L SSmg/L TKNmg/L NH4-Nmg/L NOX-Nmg/L TNmg/LPE 进水 3961973116.111.61.617.448.0 外沟 375-1.89 未检出 0.721.96-中沟 244-1.09 未 检出0.611.26-内沟243-0.95未检出0.61.18•出水283130.98未检出1.391.438.0去除率 93%-94%-92% ・“丿在文章表格中表示未检测或未计算。
实际运行参数见下表:氧化沟运行参数平均值范用进水流量903851〜937水力停留时间(h)1918〜21水温1513- 16转碟运行组数外沟5■中沟、内沟3■污泥冋流比(%) 6159 〜65MLSS ( mg/L)30372923〜3245MLVSS/MLSS0.78-DO(mg/L)外沟 00 〜0.3 中沟 0.40.1 〜0.9 内沟 3.52.9〜3.9实际供氧量为:外沟:中沟:内沟=58:23:193、低负荷长泥龄下的数学模拟3.1概述•与奥贝尔氧化沟工艺相关的数学模拟从以下几个方面进行:•奥贝尔氧化沟原型工艺模拟——确定模拟参数的可用性;•混合液I叫流比的作用——考察奥贝尔氧化沟外沟道高流速造成高冋流比对出水效果 的影响;•单沟式氧化沟的脱氮效果——在单沟式氧化沟中采用与奥贝尔氧化沟外沟道同样的 曝气布置,考察其处理效果;•低氧完全混合条件下同时硝化、反硝化的效果——低氧完全混合条件下能否实现与 奥贝尔氧化沟的外沟道相当的同时硝化与反硝化?•在奥贝尔氧化沟的外沟道中采用微孔曝气器代替曝气转碟,是否会得到同样的效果?3.2奥贝尔氧化沟原形工艺模拟3.2.1概述根据实际情况将外沟道平均分割成8个单元(1#〜8#), 4组曝气转碟分别置于4个单元中(1#、3#、5#、7#),即每隔一个单元放一组转碟,中沟道和内 沟道分别只设一个单元(9#、10#)其中各设1组转碟。
原水进入1#,混合液由8#冋流至 1#,回流污泥由二沉池回流至1#,见图321由于测试期间属非正常运行,无法测定泥令, 因此模拟中按设计泥令取值322原水水质模拟原水水质按照模型组分的划分确定如下表321、322 溶解性组分:SI——悄性CODSS——可生物降解CODSNH——氨氮SNOX——硝酸盐氮与亚硝酸盐氮SALK——碱度颗粒性组分:XI——惰性CODXS——可生物降解CODXH——异氧菌XA——白养菌Xss——悬浮物表321溶解性组分SISSSMH4SNOXSALKmg/Lmg/Lmg/Lmg/Lmol/m318.0348161.66.0 表3.2.2颗粒性组分XTXSXHXAXSSmg/Lmg/L Lmg/Lmg/L6.1240031.03.2.3数学模拟工艺流程及运行参数工艺流程见下图:工艺运行参数如下:氧化沟池容:VI#〜8#=1241m3V9#=46 llm3V10#=3192m3二沉池池容:V二沉=3612m3流量:Q=21670m3/d水温:T=15°Q污泥加流比:R=61%模拟混合液冋流比:R= 10000%模拟供氧量:外沟:中沟:内沟=65:19:16 总供氧量:7392kgo2/d3.2.4数学模拟结果计算所得污泥浓度为3500mgCOD/L,其余结果见表225。
表225奥贝尔氧化沟原型T艺模拟分析1#2#3#4#5#6#7#8#9#10#D00.230.050.220.080.330.160.440.260.712.35SS2.38——0.310.240.2 8SNH2.6——2.510.460.13 SNOX0.2——0.191.812.56比较表221和222,可知模拟数据能够与实测数据很好地吻合:绝大部分有机物和氮在外沟道去除:外沟道总氮为2.7mg/L(实测总氮为2.6mg/L),去除 率为84%(实测为86.5%),有机物去除率为99.8%(实测为97.4%);只有少最氮在中沟、内沟去 除,出水总氮为2.7mg/L(实测为2.4mg/L),去除率为84%(实测为86.4%);溶解氧有一定的变化梯度,但不形成绝对的缺氧、好氧区,而是形成介乎缺氧与厌氧Z问的 缺氧/厌氧区和介乎好氧与缺氧Z间的好氧/缺氧区;计算所得污泥浓度相当于3032mg/L的 MLSS,而实测污泥浓度MLSS为3037mg/L3.3混合液冋流比的作用3.3.1概述假设在供氧量不变的条件下,考虑模拟的方便,外沟道内设2纽•转碟(模拟结果表明,2组与4 组转碟差别不大),将外沟道平均分割成6个单元(1#〜6#),2组曝气转碟分别置于2个单元中(1#、4#),即每隔2个单元放一组转碟,中沟道和内沟道同前, 分别只设一个单元(7#、8#)。
原水进入1#,混合液由6#回流至1#,混合液回流比由100 倍改为10倍,冋流污泥由二沉池冋流至1#,其余模拟皆同2.2节,以考察奥贝尔外沟道中 高冋流比的作用工艺流程见下图:其中,池容V1〜6=1655m3o3.3.2数学模拟结果 模拟结果见下表表3.3.1奥贝尔氧化沟混合液I叫流比的影响1 #2#3 堀 #5#6#7#8#DOO. 17001.610.120.010.311.16SS6.84一一0.240.280.29SNH4.65一一4.291.450 .29SNOXO.11一0.251.112.12在给定条件下,由于I川流比的改变,使得外沟道内溶解氧分布的梯度明显加大,缺氧/厌 氧区扩磊,好氧/缺氧区缩小,尽管平均溶解氧(0.31mg/L)有所提高,但由于高氧区域(曝气转碟附近)极为狭小,外沟道硝化效果下降,从而导致脱氮效果的下降,但出水与高冋流比时 的效果基木…样这说明奥贝尔外沟道内的高流速是其我外沟道拥有良好的脱氮效果的重要 原因,但不等于说流速越高越好,模拟结果表明,混合液冋流比为50倍时,效果最佳3.4单沟式氧化沟脱氮的可能性3.4.1概述本节模拟的原则是在3.2节氧化沟工艺参数(混合液冋流比为100倍)的基础上模拟单沟式 氧化沟,即在泥令、生物池总体积、总供氧量相同,进水水质相同的条件下模拟奥贝尔外沟 道的运行方式。
T艺流稈见下图:1 #2#3#4#5#6#D00.650.220.081.060.620.31SS 1.2 一―0.22SNH0.76一一0.67SNOX 1.18一一 1.19 在给定条件下,采用与外沟道相同布置的单沟式氧化沟,由于平均溶解氧(0.63mg/L)提 高了 2倍多,碳氧化与脱氮效果均优于奥贝尔,只是由于缺少了奥贝尔氧化沟3沟道中溶解氧 0-1-2的分布,最终硝化不够彻底3.5低氧条件下的同时硝化反硝化木节分3种形式模拟第一种是在供氧量相同的条件下,将奥贝尔氧化沟的外沟道替换为 采用微孔曝气器的完全混合曝气池,而中沟、内沟不变的一种改型工艺;第二种是不改变奥贝尔的基木池型,只是在同样 供氧量的条件下,在外沟道采用微孔曝气器代替曝气转碟,因此也就不存在混合液冋流问题,其他均不变;第三种是在第二种的基础上,在外 沟道强制进行混合液冋流目的是考察外沟道处于低氧状态下时发生同时硝化反硝化的可能 性以及奥贝尔氧化沟外沟道工艺改型的可能性3.5.1工艺流程第一种改型工艺流程见下图:其中,外沟Vl=9930.5m3中沟 V2=4611m3内沟 V3=3192m3供氧量及其他条件均与3.2节相同。
第二种改型工艺流程见下图:其中,1#〜6#单元均为曝气单元,供氧量均等,总供氧量及其他条件均与3.2节相同 第三种改型工艺流稈下图:这种流程力与第二种的区别,只是根据奥贝尔的真实情形增加了混合液I川流3.5.2数学模拟结果第一种改型工艺。
