好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

电网络理论 (1).docx

5页
  • 卖家[上传人]:s9****2
  • 文档编号:405917613
  • 上传时间:2023-04-29
  • 文档格式:DOCX
  • 文档大小:22.46KB
  • / 5 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 电网络理论Electric Network Theory课程主要内容概述一、 基本概念1. 矩阵代数初步在电网络分析中要出现代数的或者微分的线性方程组,当这些方程组包含着许多个方 程式时,单单是编写它们和使它们具体化非常的麻烦矩阵表示法乃是编写这些方程组的 一种简便方法;而且矩阵表示法还能简化这些方程的运算和它们的求解在这一节中,复习了矩阵的基本性质和矩阵代数.如:矩阵的概念,矩阵的基本运算(矩 阵的乘法、微分、积分、转置、共轭、共轭转置),矩阵的类型(对称矩阵和斜对称矩阵、 埃尔米特矩阵和斜埃尔米特矩阵),矩阵的逆,行列式及其基本运算等主要内容2网络分类电路的特性在很大程度上决定于电路元件的特性,同时也决定于电路元件的相互连接 方式2.1线性和非线性 在电路理论中,电路的线性和非线性有两种定义,一是根据电路元件的特性来定义,二是 根据输入输出关系来定义,后者称为端口型定义若电路的线性无源元件(具有任意的初始条件)、线性受控源及独立电源组成,则称为 线性电路若电路含有一个或几个非线性元件,则称为非线性电路研究电路(或网络)的输入输出关系时,则可根据端口变量之间的关系来定义电路的线 性性质,这样的定义称为端口型线性定义.假设多端口网络的输入U为M维向量,输出Y为N维向量.当任一端口的电压和电流服 从该端口限定的约束时,称此端口的电压和电流为一对允许的信号。

      若一网络的输入输出关系由微分积分方程组N(U,Y)=0给出,当该网络的输入输出关 系既存在齐次性又存在可加性,则称为端口型线性网络.当网络的输入输出关系不同时存在 齐次性与可加性,则称为端口型非线性网络这一关系意味着端口型线性网络的输入输出微 分积分关系式满足叠加原理.22时变和时不变一个不含时变元件的电路称为时不变电路,否则称为时变电路关于N端口的时变和时不变性质,“按端口”的时变和时不变根据以下定义来考虑设 对一个N端口的激励和响应有:U(t)一Y (t),D(t)-Y(t)如果对所有t°,当D (t) = U (t — t0)时,有Y (t)= Y (t — t0),则称此N端口为“按 端口时不变”网络由时不变元件构成的N端口且初始条件均为零值,将是按端口时不变的 在特殊情况下,由时变元件构成的N端口有可能是按端口时不变的2. 3无源性和有源性对于图1所示一端口 N,输入该网络的功率 P(t) =v(t)i(t)从任何初始时刻to到t,该网络的总能量W(t) = W(t ) ° + Jv(T)i(T)dT0式中W(to)为在初始时刻to时该一端口储存的能量若对所有to以及所有时间t次°,有W (t)三0 (对于任何v (t),i (t))则此一端口为无源的。

      如果一端口不是无源的,它就是有源的就是说,当且仅当对某个激 励和某一初始时间t0以及某一时间t三10,有W(t) 〈0,则此一端口就是有源的在以上有关无源性的定义中必须计及初始储存能量w(t0)假设一端口在t= 时无任何储存能量,则无源性可按下式定义W(t) = W (t°) +Jv(T)i(T)d T 20(对于任何 V (t), i (t))以上有关无源性的定义可以推广到N端口如果全部端口的电压、电流允许信号对是 真实的,且对所有1,输入端口的总能量为非负的,则此N端口为无源的如果对某些允许 信号对,且对某些t〉-8,输入端口的总能量为负的,则此N端口为有源的以上有关无源性和有源性主要针对线性电路而言的非线性电路的无源性和有源性的 定义较为复杂2.4 连续时间系统和离散时间系统连续时间信号的独立变量(t)是连续的,所以这种信号对独立变量的连续值都有意义 离散时间信号则仅对离散时间有意义.所以这种信号的独立变量取离散值.如果系统的输入 是连续时间信号,输出也是连续时间信号,则称该系统为连续时间系统值得注意的是并不 要求连续时间系统的输入输出信号都是连续函数如果系统的输入和输出都是离散时间信号,则称该系统为离散时间系统。

      连续时间系 统通常用微分方程描述,而离散时间系统则常用差分方程描述.3 网络部件 电路元件主要有电阻元件、电容元件和电感元件线性(正)电阻元件、电容元件和电 感元件均为无源元件线性负电阻、负电容和电感是有源元件2. 网络部件 在网络模型中,假设存在由它们的电压和电流之间的关系来定义的某些元件三种节 本元件是电阻器、电感器和电容器由三种基本的元件可以组成多种网络部件,如变压器、 回转器、电源等.二、 图论与网络方程式1. 线图 网络的拓扑性质与构成支路的部件的类型无关.所以用一个简单的线段来表示每个网 络元件是合适的,从而就不必去管特定的部件.这样所得到的结构是由被线段互相连接起 来的一些节点构成的线路理论所研究的正是这种结构在这节中介绍了线图及其相关概念.如:线图,节点,支路,关联,定向图,子图,路 径,连通与不连通,回路,树,树支,余树,关联矩阵回路矩阵,A和B的子矩阵之间的关 系,割集和割集矩阵,平面图等.2. 电网络的基本定律 广义的说,一个电网络是由两个或者更多个元件或者支路的相互连接组成的;这些支路可以是由网络部件构成的,或者由其他更一般的(非线性、时变的等等)部件构成的 每个支路都有一个电压变量和一个电流变量;这些变量是有特定的关系彼此联系起来的。

      本节介绍了基尔霍夫电流定律,基尔霍夫电压定律,支路关系3. 回路、节点及节偶方程式根据基尔霍夫电流定律(KCL),基尔霍夫电压定律(KVL)以及支路电压-电流关系 对于含有b个支路和n+1个节点的网络,有n个独立的KCL方程式和b-n个独立的KVL 方程式,总共是b个方程式•还有b个支路v-i关系,同其他b个独立方程式结合在一起, 足以求解2b个支路变量,即b个电流和b个电压但是,求解2b个联立方程式是一件很 繁重的工作;所以为了减少工作量而可以做到的任何事情都是有益的在这节中,对网络问题分析的若干方法,利用三种基本关系对网络求解分析包括回 路方程式,节点方程式,节偶方程式.4. 对偶性 在回路方程组和节点方程组之间有惊人的相似这个观察引起了有趣的问题,即能否 找到两个网络以使一个网络的回路方程式和另一个网络的节点方程式除了符号之外其他 都相同呢?如果整个的互换符号V和i,就能够把一个网络的回路方程式变成另一个网络 的节点方程式吗? 注意到当把支路关系代入到 KVL 中去,然后在利用 KCL 便得到回路方 程式•另一方面,当颠倒这个顺序,就是:把支路关系代入到KCL中去,然后在利用KVL 时,就得到节点方程式。

      在此基础上,上述问题得到肯定回答回路方程与节点方程组成 对偶,与其相对应的网络是对偶网络5. 非互易和有源网络回路方程式和节点方程式的系数矩阵分别为BZB'和AYA'于是,用这种一般形式来 进行回路分析或节点分析能否成功,就要看支路阻抗矩阵Z或支路导纳矩阵Y是否存在 了,对于迄今所处理的无源、互易网络,这两种矩阵都存在.对于完全耦合的变压器,这种 说法必须加以斟酌,此时Y并不存在因此,本节讨论了非互易和有源网络6. 混合变量方程式 对于含有多端元件的网络,对于某些类型的元件,要编写回路或者节点方程式会遇到一定的困难.编写回路或节点方程式能否成功,取决于支路关系的阻抗或导纳表示是否存 在当一个多端器件没有这种表示法时,为了编写所要求的方程式,可以预先实行某种支 路处理和合并本节在遵循树支电压形成电压的一个集合,根据树支电压就可以表示出全 部支路电压;连支电流形成电流的一个基底集合,根据连支电流就可以表示出全部支路电 流的原则讨论了混合变量方程式7. 网络复杂程度的阶数 在一个网络里,独立的基尔霍夫电流定律方程式和独立的基尔霍夫电压定律方程式的数目取决于网络的图,而与支路无关这对于独立的节点电压变量数目和独立的回路电流 变量数目同样是正确的。

      如果支路全是电阻器或者有一些是电容器或电感器,也不会影响 这些独立方程式的数目.但是在一个全电阻器的网络中,回路或节点方程式应该是代数的, 因为不具有对时间的微分,是静态的另一方面,当出现电容器或者电感器时,方程式是 动态的这就提出了一个关于网络有多少个动态独立变量的问题,也就提出了网络的复杂 程度的阶数概念一个网络的复杂程度的阶数等于网络的可以指定的独立的初始条件的数目.它等于网 络方程的通解中所出现的待定常数的数目8. 编写网络状态方程式的基本考虑在讨论了电网络的回路电流、节点电压和混合变量的表示法之后,本节讨论了状态方 程式基本方程仍然是KCL、KVL和v—i关系编写网络状态方程式的基本考虑基于以 下几点:(1) 最后的方程不含积分2) 最后的方程是一阶微分方程3) 在网络中,电容器电压和电流两个变量中,可以独立指定的是电容器电压的初 始值--具有全电容器回路情况除外同样,对于电感器来说,可以独立指定的 是电感器电流的初始值——具有全电感器割集情况除外4) 在最后的变量中包含电容器电压,尽可能的把电容器置于一个树中,同样,在 最后的变量中包含电感器电流,尽可能的把电感器置于余树中。

      5) 我们所研究的网络假定没有全独立电流源割集和全独立电压源回路9. 状态方程式的系统编写基于以下几方面对状态方程式进行编写:(1) 拓扑学考虑2) 消去不需要的变量.同时考虑了非时变网络,RLC网络,处理受控源考虑情况下的状态方程式的系统编 写三、 网络函数1. 策动点函数和传递函数将网络函数这一通用术语定义为响应变换与激励变换的比响应与激励二者都可以是 电压也可以是电流如果响应和激励是属于相同的端子(必须一个是电压,另一个是电流), 则此函数称为策动点函数,它或是策动点阻抗或是策动点导纳如果响应和激励是属于不 同的端子,则此函数便称为传递函数本节详细叙述了策动点函数与传递函数.2. 二端口网络及其互联二端口常用作传输网络,端口之一——通常标记为1 的端口——称为输入端口;另一 个标记为 2 的端口称为输出端口端口变量是两个端口电流和两个端口电压.本节介绍了 二端口网络的开路与短路参数,混合参数,链式参数的计算,以及传输零点某种复杂的二端口网络,它能看作由简单的二端口网络用某些方法将端口互相连接而 构成,通常有几种连接方法:级联,并联和串联3. 多端口网络将二端口网络推广,形成多端口网络,有关二端口网络的相关概念多端口网络也适用.4. 不定导纳矩阵、不定阻抗矩阵和网络函数的拓扑公式网络的端子以成对的形式与外部连接时,对网络端口的描述可用不定导纳矩阵和不定 阻抗矩阵。

      本节推导了两个矩阵的形式与其具有的性质特征利用两种矩阵推导出网络函 数的拓扑公式四、 网络函数的表示法本章讨论网络函数的表示法并研究作为解析复变函数的网络函数的性质重点对网络 函数普遍适用的性质进行介绍1. 极点、零点和固有频率的概念2. 最小相位函数把左半平面上没有零点的函数定义为最小相位传递函数.3. 最小相位网络与非最小相位网络 一个支路间没有相互耦合的,无源、互易的梯形网络,其传递函数是最小相位的.4. 由幅值确定网络函数,由给定的角度计算网络函数以及由给定的实部计算网络函数本节介绍了三种确定网络函数的方法,由幅值确定网络函数,由给定的角度计算网络 函数以及由给定的实部计算网络函数5. 实部与虚部间的积分关系前面讨论了函数的一个分量给定为有理函数时,几种确定作为s的有理函数的网络函 数的代数方法这里“函数的一个分量”是指下列量之一:实部、虚部、角度或幅值这 些方法的一个缺点是所给定的分量必须是一种可实现的有理形式在开始求网络函数之前, 先要找出一个。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.