
2024届广西北流市八年级数学第二学期期末考试模拟试题含解析.doc
18页2024届广西北流市八年级数学第二学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上用2B铅笔将试卷类型(B)填涂在答题卡相应位置上将条形码粘贴在答题卡右上角"条形码粘贴处"2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案答案不能答在试题卷上3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液不按以上要求作答无效4.考生必须保证答题卡的整洁考试结束后,请将本试卷和答题卡一并交回一、选择题(每题4分,共48分)1.在以下列线段a、b、c的长为边的三角形中,不能构成直角三角形的是( )A.a=9 b=41 c=40 B.a=b=5 c=5C.a:b:c=3:4:5 D.a=11 b=12 c=152.下列说法:(1)8的立方根是.(2) 的平方根是.(3)负数没有立方根. (4)正数有两个平方根,它们互为相反数.其中错误的有( )A.4个 B.3个 C.2个 D.1个3.已知( ).A.3 B.-3 C.5 D.-54.在一次中学生田径运动会上,男子跳高项目的成绩统计如下:成绩人数28641表中表示成绩的一组数据中,众数和中位数分别是 A., B., C., D.,5.电影院里的座位按“×排×号”编排,小明的座位简记为(12,6),小菲的座位简记为(12,12),则小明与小菲坐的位置为( )A.同一排 B.前后同一条直线上 C.中间隔六个人 D.前后隔六排6.下列运算正确的是( )A. B.=1C. D..7.若关于x的方程的解为正数,则m的取值范围是A.m<6 B.m>6 C.m<6且m≠0 D.m>6且m≠88.﹣3x<﹣1的解集是( )A.x< B.x<﹣ C.x> D.x>﹣9.如图,在▱ABCD中,对角线AC、BD相交于点O,下列哪个条件不能判定▱ABCD是矩形的是( )A.AC=BD B.OA=OB C.∠ABC=90° D.AB=AD10.下列说法中,正确的是( )A.一组对边平行,另一组对边相等的四边形是平行四边形 B.对角线相等的四边形是矩形C.有一组邻边相等的矩形是正方形 D.对角线互相垂直的四边形是菱形11.如图,在▱ABCD中,分别以AB,AD为边向外作等边△ABE,△ADF,延长CB交AE于点G,点G在点A,E之间,连接CE,CF,EF,则以下四个结论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AEA.只有①② B.只有①②③C.只有③④ D.①②③④12.已知点(-2,y1),(1,0),(3,y2)都在一次函数y=kx-2的图象上,则y1,y2,0的大小关系是( )A.0<y1<y2 B.y1<0<y2 C.y1<y2<0 D.y2<0<y1二、填空题(每题4分,共24分)13.计算:______________14.若a4·ay=a19,则 y=_____________.15.如图,以正方形ABCD的BC边向外作正六边形BEFGHC,则∠ABE=___________度.16.如图,平行四边形ABCD中,∠B=60°,AB=8cm,AD=10cm,点P在边BC上从B向C运动,点Q在边DA上从D向A运动,如果P,Q运动的速度都为每秒1cm,那么当运动时间t=_____秒时,四边形ABPQ是直角梯形.17.计算:﹣=_____.18.如图,△ACB≌△DCE,∠ACD=50°,则∠BCE的度数为_____.三、解答题(共78分)19.(8分)先化简,再求值:,其中x=,y=.20.(8分)某中学在一次爱心捐款活动中,全体同学积极踊跃捐款.现抽查了九年级(1)班全班同学捐款情况,并绘制出如下的统计表和统计图:捐款(元) 20 50 100150200 人数(人) 4 12 932求:(Ⅰ)m=_____,n=_____;(Ⅱ)求学生捐款数目的众数、中位数和平均数;(Ⅲ)若该校有学生2500人,估计该校学生共捐款多少元?21.(8分)为了解某校九年级学生立定跳远水平,随机抽取该年级名学生进行测试,并把测试成绩(单位:) 绘制成不完整的频数分布表和频数分布直方图. 请根据图表中所提供的信息,完成下列问题(1)表中= ,= ;(2)请把频数分布直方图补充完整;(3)跳远成绩大于等于为优秀,若该校九年级共有名学生,估计该年级学生立定跳远成绩优秀的学生有多少人?22.(10分)在中,,是边上的中线,是的中点,过点作交的延长线于点,连接.(1)如图1,求证:(2)如图2,若,其它条件不变,试判断四边形的形状,并证明你的结论.23.(10分)如图,在平行四边形ABCD中,E为BC边上一点,且AB=AE.(1)求证:△ABC≌△EAD;(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数.24.(10分)如图,分别表示甲步行与乙骑自行车(在同一条路上)行走的路程、与时间的关系,观察图象并回答下列问题:(1)乙出发时,乙与甲相距 千米;(2)走了一段路程后,乙有事耽搁,停下来时间为 小时;(3)甲从出发起,经过 小时与乙相遇;(4)甲行走的平均速度是多少千米小时?25.(12分)某市从今年1月起调整居民用水价格,每立方米消费上涨20%,小明家去年12月的水费是40元,而今年4月的水费是60元,已知小明家今年4月的用水量比去年12月用水量多4立方米,求该市今年居民用水的价格.26.如图,在▱ABCD中,E、F为对角线BD上的两点,且BE=DF.求证:∠BAE=∠DCF. 参考答案一、选择题(每题4分,共48分)1、D【解析】根据直角三角形的判定,符合a2+b2=c2即可;反之不符合的不能构成直角三角形.【详解】解:A、因为92+402=412,故能构成直角三角形;B、因为52+52=(5)2,故能构成直角三角形;C、因为32+42=52,故能构成直角三角形;D、因为112+122≠152,故不能构成直角三角形;故选:D.【点睛】本题考查的是勾股定理的逆定理,当三角形中三边满足关系时,则三角形为直角三角形.2、B【解析】(1)(3)根据立方根的定义即可判定;(2)根据算术平方根和平方根的定义即可判定;(4)根据平方根的定义即可判定.【详解】(1)8的立方根是2,原来的说法错误;(2)=16,16的平方根是±4,原来的说法错误;(3)负数有立方根,原来的说法错误;(4)正数有两个平方根,它们互为相反数是正确的.错误的有3个.故选B.【点睛】此题考查了相反数,立方根和算术平方根、平方根的性质,要掌握一些特殊数字的特殊性质,如1,-1和1.相反数的定义:只有符号相反的两个数叫互为相反数;立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,1的立方根是1.算术平方根是非负数.3、A【解析】观察已知m2-m-1=0可转化为m2-m=1,再对m4-m3-m+2提取公因式因式分解的过程中将m2-m作为一个整体代入,逐次降低m的次数,使问题得以解决.【详解】∵m2-m-1=0,∴m2-m=1,∴m4-m3-m+2=m2 (m2-m)-m+2=m2-m+2=1+2=3,故选A.【点睛】本题考查了因式分解的应用,解决本题的关键是将m2-m作为一个整体出现,逐次降低m的次数.4、B【解析】根据出现最多的数为众数解答;按照从小到大的顺序排列,然后找出中间的一个数即为中位数.【详解】出现次数最多的数为1.55m,是众数;21个数按照从小到大的顺序排列,中间一个是1.60m,所以中位数是1.60m.故选B.【点睛】考查了众数,中位数的定义,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5、A【解析】∵(12,6)表示12排6号,(12,12) 表示12排12号,∴小明(12,6)与小菲(12,12)应坐的位置在同一排,中间隔5人.故选A.【点睛】考查学生利用类比点的坐标解决实际问题的能力和阅读理解能力.6、D【解析】【分析】根据二次根式加减法则进行分析.同类二次根式才可合并.【详解】A. , 不是同类二次根式,不能合并,故本选项错误;B. =,故本选项错误;C. ,不是同类二次根式,不能合并,故本选项错误;D. . 故本选项正确.故选:D【点睛】本题考核知识点:二次根式的加减.解题关键点:合并同类二次根式.7、C【解析】原方程化为整式方程得:2﹣x﹣m=2(x﹣2),解得:x=2﹣,∵原方程的解为正数,∴2﹣>0,解得m<6,又∵x﹣2≠0,∴2﹣≠2,即m≠0.故选C.【点睛】本题主要考查分式方程与不等式,解此题的关键在于先求出方程的解,再得到m的不等式求解即可,需要注意分式方程的分母不能为0.8、C【解析】试题分析:将不等式﹣3x<﹣1系数化1得,x>.故选C.考点:解一元一次不等式.9、D【解析】根据平行四边形的性质,矩形的判定方法即可一一判断即可.【详解】解:∵四边形ABCD是平行四边形,∵AC=BD,∴ABCD是矩形,故A正确;∵四边形ABCD是平行四边形,∴AO=OC,BO=OD,∵OA=OB,∴AC=BD,∴ABCD是矩形,故B正确;∵四边形ABCD是平行四边形,∵∠ABC=90°,∴ABCD是矩形,故C正确;∵四边形ABCD 是平行四边形,∵AB=AD,∴ABCD是菱形,故D错误.故选:D.【点睛】本题考查了矩形的判定,平行四边形的性质,熟练掌握矩形的判定定理是解题的关键.10、C【解析】根据平行四边形、矩形、正方形、菱形的判定方法以及定义即可作出判断.【详解】解:一组对边平行且相等的四边形是平行四边形,故A错误;对角线相等的平行四边形是矩形,故B错误;有一组邻边相等的矩形是正方形,故C正确;对角线互相垂直平分的四边形是菱形或对角线互相垂直的平行四边形是菱形,故D错误;故本题答案应为:C.【点睛】平行四边形、矩形、正方形、菱形的判定方法以及定义是本题的考点,熟练掌握其判定方法是解题的关键.11、B【解析】根据题意,结合图形,对选项一一求证,判定正确选项.【详解】解:在□ABCD中,∠ADC=∠ABC,AD=BC,CD=AB,∵△ABE、△ADF都是等边三角形,∴AD=DF,AB=EB,∠ADF=∠ABE=60°,∴DF=BC,CD=BC,∴∠CDF=360°-∠ADC-60°=300°-∠ADC,∠EBC=360°-∠ABC-60°=300°-∠ABC,∴∠CDF=∠EBC,在△CDF和△EBC中,DF=BC,∠CDF=∠EBC,CD=EB,∴△CDF≌△EBC(SAS),。












