§3-3二阶系统分析.ppt
40页§3-3 二阶系统分析,由二阶微分方程描述的系统,称为二阶系统,许多高阶系统的在一定的条件下,常常近似地作为二阶系统来研究一、二阶系统地数学模型最简单的二阶微分方程的标准形式是:,其闭环特征方程为:,方程的特征根为:,经过拉氏变换可得:,由方程的特征根说明,随着阻尼比的不同,二阶系统的特征根(闭环极点)也不同,如下所示:,当0<ξ<1时,系统处于欠阻尼状态, 有一对实部为负的共轭复根,系统时间响应应具有振荡性,当ξ=1时,系统处于临界阻尼状态, 有一对相等的负实根,系统时间响应无振荡,单调上升,当ξ>1时,系统处于过阻尼状态, 有两个不相等的负实根,系统时间响应无振荡,单调上升,当ξ=0时,系统处于零阻尼状态, 有一对纯虚根,系统时间响应为持续的等幅振荡,当ξ<0时,系统处于负阻尼状态, 有一对实部为正的共轭复根,系统时间响应为发散振荡,二阶系统的响应特性完全由ξ和Wn两个参数来描述,所以, ξ和Wn是系统的重要结构参数二、二阶系统的单位阶跃响应系统的阻尼系数ξ影响系统响应的性质,下面根据ξ值的条件来讨论对应的阶跃响应当输入为单位阶跃函数时, ,有:,其中:,且T1>T2, Wn2=1/T1T2,则:,因此,过阻尼二阶系统可以看作是两 个时间常数不同的惯性环节的串联,1、过阻尼ξ>1的情况,分析:,系统闭环特征方程有两个不相等的实根,特征方程为:,当输入信号为单位阶跃时,系统的单位阶跃响应为:,稳态分量为1,动态分量为两项指数函数,且随着时间t的增长而衰减为零,最终输出稳态值为1,所以系统不存在稳态误差。
其响应曲线如下图所示:,系统有两个衰减指数项, 当ξ》1时,后一项指数 比前一项衰减的快,可以 忽略,近似为一阶系统,对于过阻尼二阶系统,无超调量,无稳态误差只着重讨论调节时间,下图是取对变量ts/T1及T1/T2经机器结算后绘制成的曲线:,由曲线看出,当T1=T2时,即ζ=1的临界阻尼情况ts =4.75 T1 ;当T1=4T2,即ζ=1.25时, ts ≈3.3T1;当T1>4T2,即ζ>1.25时, ts ≈3T1,结论:当一个系统的一个负实根比另一个大四倍以上,即两个惯性环节时间常数相差四倍以上,则系统可以等效为一阶系统,其时间调节时间可以近似估算为3 T12、临界阻尼ξ=1的情况,这时系统具有两个相等的负实根,s1,2=-Wn,所以,则可得临界阻尼下二阶系统的单位阶跃响应为:,3、零阻尼ξ=0的情况,这时系统极点为,s1,2=±jWn,4、欠阻尼0<ξ<1的情况,系统具有一对实部为负的共轭复根,时间响应呈衰减振荡特性,故又称为振荡环节一对共轭复根为:,阶跃响应为:,或者,系统的稳态分量为1,动态分量是一个随时间t的增长而衰减的振荡过程振荡角频率Wd取决于阻尼比ξ及无阻尼自然频率Wn.单位阶跃响应如右图所示:,极点的负实部 决定了指数衰减的快慢,虚部 是振荡频率。
称 为阻尼振荡角频率当ξ=0.707,以ωnt为横坐标时的单位阶跃响应曲线如下:,由曲线看出,实际响应曲线比指数曲线的包络线收敛速度要快,因此可用包络线来估算调节时间t=0:0.1:5 x=sqrt(1-0.99^2) h1=1+exp(-0.99*t)/x h2=1-exp(-0.99*t)/x h3=1-(exp(-0.99*t)/x).*sin(x*t+acos(0.99)) plot(t,h1,t,h2,t,h3),grid,二阶系统单位阶跃响应的通用曲线如下,可以利用它来分析系统系统结构参数ξ、Wn对阶跃响应性能的影响1,2,由图可以看出,对欠阻尼系统,当0.5≤ξ≤0.8时,其暂态响应能更快的达到稳定值,具有较小的调节时间在无振荡的系统中,临界阻尼比过阻尼系统的相应时间和调整时间都短过阻尼系统的响应速度最迟缓阻尼比与超调量σ%的关系曲线如下:,,平稳性:,由曲线看出,阻尼比ξ越大,超调量越小,相应的振荡倾向越弱,平稳性越好,反之,则振荡越强,平稳性越差当ξ=0时,零阻尼响应变成具有频率为Wn的不衰减(等幅)振荡,表达式如下:,由阻尼比和超调量的关系曲线可以看出, 在一定的阻尼比ξ下,Wn越大,振荡频率Wd也越高,系统响应的平稳性越差。
结论:总的来说,要使系统阶跃响应的平稳性好,就要求阻尼比ξ大,自然频率Wn小快速性:,由曲线可以看出,阻尼比ξ过大,系统响应迟钝,调节时间Ts长,快速性差;ξ过小,虽然响应的起始速度较快,但因为振荡强烈,衰减缓慢,所以调节时间也长,快速性差由误差带的调节时间与阻尼比关系曲线可以看出当ξ=0.707时,调节时间最短,即快速性最好在二阶系统的单位阶跃响应中,自变量总是与参数T(T=Wn-1)结合成t/T出现,h(t)好像是以T作为时间t的计量单位,因此T具有时间尺度的性质,如果T增大几倍,则h(t)就在横坐标方向展宽几倍,反之则压缩几倍 结论: 对于ξ值相同的系统来说,过渡过程经历的时间长短就正比于时间常数T,反比于Wn稳态精度:,系统的单位阶跃响应的稳态分量为1,动态分量均为衰减的指数函数,因此,当时间t趋于无穷时,动态分量衰减为零,因此,二阶系统的单位阶跃响应不存在稳态误差三、欠阻尼二阶系统单位阶跃响应性能指标,1、上升时间tr单位阶跃响应曲线第一次达到稳态值的时间就是上升时间,此时,h(tr)=1,即得:,解得,结论:当阻尼比ξ一定时,欲使上升时间tr较短,必须要求系统具有较高得无阻尼自然频率Wn。
2、峰值时间tp,响应曲线到达第一次峰值所需要得时间,将系统的单位阶跃响应h(t)对时间求导,并令其为零,可得到峰值时间所以有,由于tp定义为第一次到达峰值的时间,所以应该取:,3、超调量σ%,将t=tp代入代入系统阶跃响应的表达式,且h(∞)=1,,所以,4、调节时间ts,由于ξ通常是根据最大超调量的要求来确定的,所以ts主要由wn来确定由分析知,当ξ=0.4~0.8时,调节时间和超调量都较小工程上常取ξ=0.707作为设计依据,称为最佳阻尼比5、振荡次数N,由定义可知:,若已知σ,且,则振荡次数:,eg3-2: 位置随动系统的开环传递函数如下,当给定位置为单位阶跃时,试计算放大器增益Ka=200时,输出位置响应特性的性能指标:峰值时间、调节时间和超调量如果将放大器增益增大到Ka=1500或减小到Ka=13.5,那么响应的动态性能有何影响?,解:系统属于单位负反馈,所以它的闭环传递函数为:,将K=200代入得:,对照标准形式得:,故峰值时间:,调节时间:,超调量:,由标准形式,即当Ka增大时,Wn增大, ξ减小,调节时间没有变化,峰值时间减小(即提前),超调量增大系统成为过阻尼系统,可以看成两个时间常数不同得惯性环节得串连,没有峰值时间和超调量,而调节时间主要取决于大时间常数得一阶系统,得到: ts=3T1=1.46s ,过程比较缓慢。
Ka在取不同值时,系统的阶跃响应曲线如下所示:,如何利用simulink分析系统? 首先打开silulink设置参数然后点击仿真,察看仿真结果,,• 化为标准形式,• 即有 2n=1/Tm=5, n2=K/Tm=25,• 解得 n=5, ζ=0.5,例 已知图中Tm=0.2,K=5,求系统单位阶跃响应指标设单位反馈的二阶系统的单位阶跃响应曲线如图所示,试确定其开环传递函数解:图示为一欠阻尼二阶系统的单位阶跃响应曲线由图中给出的阶跃响应性能指标,先确定二阶系统参数,再求传递函数0,t(s),1,,,,,1.3,0.1,c(t),,例,四、二阶系统响应性能的改善措施,系统响应性能对结构参数的要求往往时矛盾的,加大开环增益会提高响应速度,但阻尼偏小使振荡加剧;反之,减小增益能提高系统响应的平稳性,但过渡过程时间又加长,因此,需要通过其他控制方式,改变系统的动态性能和稳态性能[0,t1]误差信号为正,产生正向修正作用,以使误差减小,但因系统阻尼系数小,正向速度大,造成响应出现正向超调 [t1,t2]误差信号为负,产生反向修正作用,但开始反向修正作用不够大,经过一段时间才使正向速度为零,此时输出达到最大值。
[t2,t3]误差信号为负,此时反向修正作用大,使输出返回过程中又穿过稳态值,出现反向超调 [t3,t4]误差信号为正,产生正向修正作用,但开始正向修正作用不够大,经过一段时间才使反向速度为零,此时输出达到反向最大值二阶系统超调产生过程:,二阶系统超调产生原因: [0,t1] 正向修正作用太大,特别在靠近t1 点时 [t1,t2] 反向修正作用不足 减小二阶系统超调的思路: [0,t1] 减小正向修正作用附加与原误差信号相反的信号 [t1,t2] 加大反向修正作用附加与原误差信号同向的信号 [t2,t3]减小反向修正作用附加与原误差信号相反的信号 [t3,t4] 加大正向修正作用附加与原误差信号同向的信号即在[0,t2] 内附加一个负信号,在[t2,t4]内附加一个正信号减去输出的微分或加上误差的微分都具有这种效果1、比例—微分控制比例微分控制的二阶系统如下所示,E(s)为误差信号,Td为微分时间常数它是一种早期控制,能在实际超调之前就产生一个适当的修正作用系统的,系统的开环传递函数为:,闭环传递函数为:,Tds的设置等效于阻尼比加大,从而使超调减弱,改善了系统的平稳性基于在原系统阻尼比很小的情况下,可实现等效阻尼比等于1,完全消除振荡。
eg3-3: 如下图所示的单位负反馈系统,已知系统在单位斜坡输入时,稳态误差为ess=1/k,若要求ess≤0.2, ξd=0.5,试确定K与Td的值解:由ess=1/k ≤ 0.2,取K=5,令Td=0,可得无零点二阶系统的闭环特征方程:,S2+0.6s+3=0,因此得: ξ=0.173,Wn=1.732,当Td≠0,由ξd=ξ+0.5TdWn2=0.5,可以求出Td=0.38s,此时系统为有零点二阶系统系统的时间响应曲线如下所示:,未加入比例—微分控制的系统阶跃响应曲线,加入比例—微分控制的系统阶跃响应曲线,闭环传递函数:,输出量拉氏变换:,其中,输出响应为:,式中,加入比例微分控制后的参数计算,,,部分性能指标:,已知输出响应,取误差带 =0.05,由上式解得,2、测速反馈控制,将输出量的导数反馈到系统输入端,与误差信号相叠加,以增大系统阻尼,改善系统动态性能的控制称为测速反馈控制,如下图所示:,系统的开环传递函数为:,系统的开环传递函数为:,eg3-4: 设控制系统如下图所示,试确定系统阻尼比为0.5时的Kt值,并计算系统有无测速反馈时的性能指标解:无测速反馈时,系统的闭环传递函数为:,因此,ξ=0.158,Wn=3.16,且在单位阶跃信号作用下,计算得动态性能:tr=0.55s, σ%=60.4%,ts=7s,带测速反馈时,系统的闭环传递函数为:,因此,ξ=0.5,Wn=3.16时,tr=0.77s, σ%=16.3%,ts=2.2s,无测速反馈时,系统的阶跃响应:,带测速反馈时,系统的阶跃响应:,。

卡西欧5800p使用说明书资料.ppt
锂金属电池界面稳定化-全面剖析.docx
SG3525斩控式单相交流调压电路设计要点.doc
话剧《枕头人》剧本.docx
重视家风建设全面从严治党治家应成为领导干部必修课PPT模板.pptx
黄渤海区拖网渔具综合调查分析.docx
2024年一级造价工程师考试《建设工程技术与计量(交通运输工程)-公路篇》真题及答案.docx
【课件】Unit+3+Reading+and+Thinking公开课课件人教版(2019)必修第一册.pptx
嵌入式软件开发流程566841551.doc
生命密码PPT课件.ppt
爱与责任-师德之魂.ppt
制冷空调装置自动控制技术讲义.ppt


