
教育专题:专题1第4讲转化与化归思想Word版.doc
4页四、转化与化归思想转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种数学方法.一般是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.2.转化与化归的常见方法(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题.(2)换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.(3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径.(4)等价转化法:把原问题转化为一个易于解决的等价问题,以达到化归的目的.(5)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题的结论适合原问题.(6)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题.(7)坐标法:以坐标系为工具,用计算方法解决几何问题是转化方法的一个重要途径.(8)类比法:运用类比推理,猜测问题的结论,易于探求.(9)参数法:引进参数,使原问题转化为熟悉的问题进行解决.(10)补集法:如果正面解决原问题有困难,可把原问题的结果看作集合A,而把包含该问题的整体问题的结果类比为全集U,通过解决全集U及补集∁UA使原问题获得解决,体现了正难则反的原则.[例1] 若椭圆C的方程为+=1,焦点在x轴上,与直线y=kx+1总有公共点,那么m的取值范围为________.[思维流程]特殊与一般的转化步骤特殊与一般转化法是在解决问题过程中将某些一般问题进行特殊化处理或将某些特殊问题进行一般化处理的方法.这类转化法一般的解题步骤是:第一步:确立需转化的目标问题:一般将要解决的问题作为转化目标.第二步:寻找“特殊元素”与“一般元素”:把一般问题转化为特殊问题时,寻找“特殊元素”;把特殊问题转化为一般问题时,寻找“一般元素”.第三步:确立新目标问题:根据新确立的“特殊元素”或者“一般元素”,明确其与需要解决问题的关系,确立新的需要解决的问题.第四步:解决新目标问题:在新的板块知识背景下用特定的知识解决新目标问题.第五步:回归目标问题.第六步:回顾反思:常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.对于选择题,当题设在普通条件下都成立时,用特殊值进行探求,可快捷地得到答案;对于填空题,当填空题的结论唯一或题设条件提供的信息暗示答案是一个定值时,可以把题中变化的量用特殊值代替,即可得到答案.1.已知双曲线C:-=1的右支上存在一点P,使得点P到双曲线右焦点的距离等于它到直线x=-(其中c2=a2+b2)的距离,则双曲线C离心率的取值范围是( )A.(1, ] B.[,+∞)C.(1, +1] D.[+1,+∞) [例2] (1)设x,y为正实数,若4x2+y2+xy=1,则2x+y的最大值是________.(2)若关于x的方程9x+(4+a)·3x+4=0有解,则实数a的取值范围是________.[思维流程]函数、方程与不等式间的转化函数、方程与不等式就像“一胞三兄弟”,解决方程、不等式的问题需要函数帮助,解决函数的问题需要方程、不等式的帮助,因此借助于函数、方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等式关系转化为最值(值域)问题,从而求出参变量的范围.2.已知函数f(x)=ax3+bx2+x+3,其中a≠0.(1)当a,b满足什么条件时,f(x)能取得极值?(2)已知a>0,且f(x)在区间(0,1]上单调递增,试用a表示出b的取值范围. [例3] 若对于任意t∈[1,2],函数g(x)=x3+x2-2x在区间(t,3)上总不为单调函数,则实数m的取值范围是________.[思维流程]正与反的转化法正难则反,利用补集求得其解,这就是补集思想,一种充分体现对立统一、相互转化的思想方法.一般地,题目若出现多种成立的情形,则不成立的情形相对很少,从反面考虑较简单,因此,间接法多用于含有“至多”“至少”情形的问题中.3.若二次函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]内至少存在一个值c,使得f(c)>0,则实数p的取值范围是________.[例4] 已知函数f(x)=x3+3ax-1,g(x)=f′(x)-ax-5,其中f′(x)是f(x)的导函数.对满足-1≤a≤1的一切a的值,都有g(x)<0,则实数x的取值范围为________.[思维流程]主与次的转化法合情合理的转化是数学问题能否“明朗化”的关键所在,通过变换主元,起到了化繁为简的作用.在不等式中出现了两个字母:x及a,关键在于该把哪个字母看成变量,哪个看成常数.显然可将a视作自变量,则上述问题即可转化为在[-1,1]内关于a的一次函数小于0恒成立的问题.4.设f(x)是定义在R上的单调增函数,若f(1-ax-x2)≤f(2-a)对任意a∈[-1,1]恒成立,求x的取值范围. “化归与转化”还有“数与形的转化、数学各分支之间的转化”等,应用时还应遵循以下五条原则:1.熟悉化原则将陌生的问题转化为熟悉的问题,以利于运用熟知的知识和经验来解答问题.2.简单化原则将复杂的问题转化为简单的问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据.3.和谐化原则转化问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐统一的形式,或者转化命题,使其推演有利于运用某种数学方法或符合人们的思维规律.4.直观化原则将比较抽象的问题转化为比较直观的问题来解决.5.正难则反原则当问题正面讨论遇到困难时,应想到考虑问题的反面,设法从问题的反面去探求,使问题获得解决,或证明问题的可能性.总之,化归与转化是高中数学的一种重要思想方法,掌握好化归与转化的思想方法的特点、题型、方法、要素和原则对我们学习数学是非常有帮助的.一、选择题1.若a>2,则关于x的方程x3-ax2+1=0在(0,2)上恰好有( ) 个根A.0 B.1 C.2 D.32.如图所示,已知三棱锥PABC,PA=BC=2,PB=AC=10,PC=AB=2,则三棱锥PABC的体积为( )A.40 B.80C.160 D.2403.定义运算:(a⊕b)⊗x=ax2+bx+2.若关于x的不等式(a⊕b)⊗x<0的解集为{x|1












