好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

数据包络分析法DEA总结.doc

12页
  • 卖家[上传人]:M****1
  • 文档编号:522617076
  • 上传时间:2023-04-22
  • 文档格式:DOC
  • 文档大小:94.50KB
  • / 12 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • DEA( Data En velopme nt An alysis )数据包络分析目录一、 DEA的起源与发展(参考网络等相关文献) 二、 基本概念 1 决策单元(Decision Making Unit , DMU 2. 生产可能集(Production Possibility Set , PPS 3. 生产前沿面(Production Frontier ) 4. 效率(Efficiency ) 三、 模型 1. CCR模型 2. BBC模型 3. FG模型 4.ST模型 5. 力口性模型(additive model ,简称 ADD) 6. 基于松弛变量的模型(Slacks-based Measure,简称SBM)7. 其他模型 四、 指标选取 五、 DEA的步骤(参考于网络) 六、 优缺点(参考一篇博客) 七、 非期望产出 1. 非期望产出的处理方法: 2. 非期望产出的性质:八、 DEA几个注意点 九、 DEA相关文献的总结 1. 能源环境效率 2. 碳减排与经济增长 3. 关于工业、制造业、产业的 DEA 4. 关于企业的DEA 5. 其他 一、 DEA勺起源与发展(参考网络等相关文献)数据包络分析(DEA是一种常用的效率评估的方法,用以评价一组具有多 个投入、多个产出的决策单元(Decisi on Maki ng Un its ,DMUS之间的相对效 率。

      1978年,A.Chames(查恩斯),W.Cooper(库伯)和 E.Rhodes (罗兹)提出 了第一个DEA模型,这个模型被命名为 CCR模型该模型在评价多投入多产出 DMU勺规模有效性和技术有效性方面十分有效1985 年,A.Chames W.Cooper, B.Golany (格拉尼),L.Seiford (赛福德) 和J.Stutz (斯图茨)给出另一个模型,称为 C2GS2莫型,这一模型用来研究生 产部门间的“技术有效性”1987年,A.Chames W.Cooper,魏权龄和黄志明又得到了称为锥比率的数 据包络模型C2WI模型这一模型可用来处理具有过多的输入及输出的情况,而 且锥的选取可以体现决策者的“偏好”,灵活地应用这一模型,可以将 C2R模型 中确定出的DEA有效决策单元进行分类或排队此后,在国内外学者们的共同努力下,不断有新的 DEA模型问世,DEA方法也得以不断完善和发展随着理论研究的进一步深入,DEAF应用领域日益广泛, 成为社会、经济和管理领域的一种重要而有效的分析工具,并取得了许多应用成 果二、 基本概念主要参考的是这两篇文章:杨国梁,刘文斌,郑海军.数据包络分析法(DEA)综述[J].系统工程学报, 2013,28(6) : 840-860.罗艳.基于DEA方法的指标选取和环境效率评价研究[D].中国科学技术大 学博士学位论文,2012.1. 决策单元(Decision Making Unit , DMUDMU!效率评价的对象,可以理解为一个将一定“投入”转化为一定“产出” 的实体。

      每个DMU都在生产过程中将一定数量的生产要素转化成产品, 努力实现自身的决策目标,因此他们都表现出一定的经济意义 DMU勺概念是广义的,可以是工厂、银行等 盈利性组织,也可以是学校、医院等 非营利性组织在多数情 况下,我们说的DMU指的是同质的(或同类型的)个体,也即具有以下特征的 DMU(1) 具有相同的目标;(2) 具有相同的外部环境;(3) 具有相同的投入和产出指标同质性保证了决策单元之间的可比性和评价结果的公平性 但当我们进一步把“黑箱”打开,深入研究决策单元的内部结构和子单元的生产效率时,有时会 涉及非同质决策单元例如:隶属于同一公司的若干个分公司, 虽然他们具有相同的投入和产出,但由于地理位置的原因而处于不同的外部环境中 总部在进行绩效考评时,必须釆取合适的方法处理分公司非同质的问题,以刺激内部竞争, 从而提高整体效率Castelli等人(2001)曾建立DEA-like模型来评价非同质 的多个决策单元2. 生产可能集(Production Possibility Set ,PPS记X、丫为某个DMI在其生产活动中的投入、产出向量,贝U可以用(X,Y)来 表示这个DMU勺整个生产活动。

      考虑n个DMI单元,单元DM(j=1,2,3…,n )有m个投入Xj(i=1,2,3…,m), s 个产出 Yj (r=1,2,3 …,s )定义1:称集合T={(X,Y) |产出丫能用投入X生产出来}为所有可能的生产活动构成的生产可能集合根据Banker的研究,生产可能集需要满足四个假设:假设1表明生产可能集T是一个凸集;假设2即若以原投入的k倍进行生产, 可以得到原产出k倍的产出;假设3即在原来的生产活动的基础上增加或减少产 出的生产总是可能的假设2还分为2-1收缩性假设0 1在DEA模型中,几种最基本的生产可能集是 Tcc,Tbbc,Tfg, Tst,分别对应于 CCF模型,BCC模型,FG模型,ST模型Tcc满足假设1-4,Tbbc满足假设1、3、4,Tfg满足假设1、2-1、3、4,Tst满 足假设 1、2-2、3、43. 生产前沿面(Production Frontier )定义 2: ■: ■ ■ ' | :则称L为生产可能集T的弱有效面,称.LG T为生产可能集T的弱生产前沿 面特别地,若①>0,口 >0则称L为T的有效面,称LA T为生产可能集T的生 产前沿面(魏权龄,2004)。

      在DEA理论中,判断一个DMU!否为DEAt效,实质上就是判断该 DMI是否 落在生产可能集的生产前沿面上4. 效率(Efficiency )在DEAS论中,效率通常包括:技术效率(technical efficiency)、规模效 率(scale efficiency) 和配置效率(allocation efficiency) 技术效率指的是在保持决策单元投入不变的前提下, 实际产出同理想产出的比值技术效率反映了决策单元在给定投入情况下获取最大产出的潜力 一般情 况下,技术效率取值在0和1之间若技术效率值等于1,则说明DMU在现有投 入水平下实现了产出的最大化,是技术有效的;若技术效率值小于1,则说明DMU 的实际产出和理想产出之间还存在差距,没有位于生产前沿面上规模效率是在CCR效率和BCC效率的基础上定义的在Cooper et al.(2000) 的着作中,CCF效率值称为全局技术效率,BCC效率值称为局部纯技术效率,两 者的比值称为规模效率,即DMU在规模报酬不变下的技术效率和规模报酬可变下 的技术效率的比值同样,规模效率值等于 1,说明决策单元是规模有效的;规模效率值小于1,说明决策单元是规模无效的。

      配置效率指的是在保持决策单元产出不变的前提下,决策单元的总体效率和 技术效率的比值(Hartman et al., 2001 ) 其中,总体效率定义为决策单元的最小成本与实际成本的比值在计算总体效率时,考虑了所有投入变量的价格信 息,总体效率越接近于1,说明决策单元的运营成本越接近理想状态当配置效 率等于1时,说明决策单元的配置是有效的A、B C三点均在生产前沿面上,其效率值均为1,也即都是技术有效的A 点为弱有效,B、C点为有效三、模型主要参考了这篇文章:罗艳•基于DEA方法的指标选取和环境效率评价研究[J].中国科学技术大 学博士论文,2012.以下部分只是简要列举了各种类型的 DEA模型,详细的模型建模及相关公式详见相关参考文献1. CCR模 型CCR模型是第一个 DEA模型,也是最基本的DEA模型之一,由ChamesCooper 和Rhodes于1978年建立该模型是以规模收益不变(Constant Returns to Scale, CRS为前提,对决策单元进行效率评价2. BBC模型Banker, Chames 和 Cooper (1984)对 Chames 等人(1978)的工作进行拓 展,建立了 BCC模型,将其应用于规模收益可变(Variable Returns to Scale, VRS) 情况下的效率评价问题。

      3. FG模型FG模型是Rire和Grosskopf (1985)在使用费用方法研究规模收益问题时提 出的,用于规模收益非递增情况下的决策单元的效率评价问题4.ST模型Seiford和Thrall (1990)提出了 ST模型,用于规模收益非递减情况下的 决策单元的效率评价问题5. 加性模型(additive model ,简称 ADD)以上四种基本模型中,除CCR莫型外,其他投入导向和产出导向模型的求解 结果并不一定保持一致,因此在计算时需要对导向加以区分,而加性模型(Chames et al., 1985) 的好处是能够将两种导向结合在一个模型中6. 基于松弛变量的模型(Slacks-based Measure,简称SBM)SBM莫型(Tone, 2001)是对ADD模型的拓展,解决了投入或产出变量的单位 不一致的情况下的效率评价问题,即具有单位不变性 (un its in varia nt) 7. 其他模型随着DEA理论体系的不断发展和完善,国内外学者相继提出了一系列 DEA模型,除了以上介绍的几种,还包括:Russell测量模型;保证域模型;考虑偏 好的锥比率模型;FDH模型;超效率模型;交叉效率模型;逆 DEA模型;网络DEA莫型;含有不可控变量的DEA模型;含有分类变量的DEA模型;时间序列DEA 模型;随机DEA模型;含有非期望产出的环境效率模型等等。

      四、指标选取主要参考的是这篇文章:罗艳•基于DEA方法的指标选取和环境效率评价研究[D].中国科学技术大 学博士学位论文,2012.运用数据包络分析方法对一组决策单元进行效率评价的前提是建立一套合 理的评价指标体系评价目的不同,选取的评价指标也不同即使针对同样的目 的,选取的评价指标不同,得到的结果也千差万别DEA是 一种基于数据的评价方法,所以科学地选择评价指标是效率评价工作 的关键,也是保证评价结果合理性的前提在指标选取中,需要注意这样几个问题:(1) 指标个数要合适DEA理论中的拇指法则(rule of thumb) 规定,决策单 元个数至少要为评价指标个数的两倍 一旦指标个数较多,违背了拇指法则,将 会导致有效决策单元个数较多,大大降低 DEA模型的区分度;而指标个数较少, 则不利于发现问题,也无法为决策者提供充分的信息以辅助决策2) 选取的指标能够真实反映生产过程这就要求指标选取要尽量避免任意 性和主观性,并能正确定义每一个指标的属性(或为投入变量,或为产出变量1)3) 所选指标要易于获取数据因为 DEA是基于数据的一种效率评价方法, 效率值也通过投入、产出数据表示,没有数据,也就无法进行计算。

      目前,常用的指标选取方法有经验判断法(定性)、主成分分析法、因子分 析法等现金增加值(Cash Value Added, CVA)基于现金增加值的指标选取方法:同时使用现金流量表和资产负债表中的数 据Eg:银行效率评价的实证分析与其他方法相比,CVA指标选取过程具有一些显着优势:第一,它保证了选 择的客观性,避免了主观因素对DEM算结果的影响;第二,能够在指标选取的 同时,为决策者和研究者提供有关变量属性的相关信息, 属性确定对于DEA^算是非常重要的;第三,每一个变。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.