
数学人教版九年级下册相似三角形的性质作业.doc
5页相似三角形的性质练习题一、选择题1﹒若两个相似多边形的面积之比为1:3,则它们的周长之比为( )A.1:3 B.3:1 C.:3 D. :12﹒在△ABC中,D、E为边AB、AC的中点,已知△ADE的面积为4,那么△ABC的面积是( )A.8 B.12 C.16 D.203﹒如果一个三角形保持形状不变,但面积扩大为原来的4倍,那么这个三角形的边长扩大为原来的( )A.2倍 B.4倍 C.8倍 D.16倍4﹒如图,△ABC中,点D段BC上,且△ABC∽△DBA,则下列结论一定正确的是( )A.AB2=BCBD B.AB2=ACBD C.ACBD=ABAD D.ABAC=ADBC 第4题图 第5题图 第6题图 第7题图5﹒如图,在平行四边形ABCD中,E是AB的中点,CE和BD相交于点O,设△OCD的面积为m,△OEB的面积为,则下列结论中正确的是( )A.m=5 B.m=4 C.m=3 D.m=106﹒如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为( )A. B. C. D.7﹒如图,在等边△ABC中,点D为边BC上一点,点E为边AC上一点,且∠ADE=60°,BD=4,CE=,则△ABC的面积为( )A.8 B.15 C.9 D.128﹒如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC和BC上,则CE:CF=( )A. B. C. D. 第8题图 第9题图 第10题图9﹒如图,小明晚上由路灯A下的点B处走到点C处时,测得自身影子CD的长为1米,他继续往前走3米到达E处(即CE=3米),测得自己影子EF的长为2米,已知小明的身高为1.5米,那么路灯A的高度AB是( )A.4.5米 B.6米 C.7.2米 D.8米10.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,给出下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S△ABF:S四边形CDEF=2:5,其中正确的结论有( )A.1个 B.2个 C.3个 D.4个二、细心填一填11.已知△ABC∽△DEF,若△ABC与△DEF的相似比为2:3,则△ABC与△DEF对应边上的中线的比为___________.12.若两个相似三角形的周长之比为2:3,则它们的面积之比是___________.13.如图,△ABC和△A1B1C1均在4×4的正方形网格图(每个小正方形的边长都为1)中,△ABC与△A1B1C1的顶点都在网格线的交点处,如果△ABC∽△A1B1C1,那么△ABC与△A1B1C1的相似比是_____. 14.如图,在Rt△ABC中,∠ACB=90°,将△ABC沿BD折叠,点C恰好落在AB上的点 处,折痕为BD,再将其沿DE折叠,使点A落在D的延长线上的处.若△BED∽△ABC,则△BED与△ABC的相似比是__________.15.如图,在一块直角三角板ABC中,∠C=90°,∠A=30°,BC=1,将另一个含30°角的△EDF的30°角的顶点D放在AB边上,E、F分别在AC、BC上,当点D在AB边上移动时,DE始终与AB垂直,若△CEF与△DEF相似,则AD=____________.16.如图,已知在Rt△OAC中,O为坐标原点,直角顶点C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过OA的中点B,交AC于点D,连接OD.若△OCD∽△ACO,则直线OA的解析式为____________.三、解答题17.已知:如图,平行四边形ABCD的两条对角线AC、BD相交于点O,E是BO的中点,连接AE并延长交BC于点F,求△BEF与△DEA的周长之比.18.已知,如图,在梯形ABCD中,AD∥BC,对角线AC与BD相交于点O.若=,S△BOC=m.试求△AOD的面积.19.如图,在△ABC中,点P是BC边上任意一点(点P与点B,C不重合),平行四边形AFPE的顶点F,E分别在AB,AC上.已知BC=2,S△ABC=1.设BP=x,平行四边形AFPE的面积为y.(1)求y与x的函数关系式;(2)上述函数有最大值或最小值吗?若有,则当x取何值时,y有这样的值,并求出该值;若没有,请说明理由.20.已知:如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,E为直角边AC的中点,过D,E作直线交AB的延长线于F.求证:=.21.已知,如图,在△ABC中,P是边AB上一点,AD⊥CP,BE⊥CP,垂足分别为D、E,AC=3,BC=3,BE=5,DC=.求证:(1)Rt△ACD∽Rt△CBE;(2)AC⊥BC.22.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连接BE、BF,使它们分别与AO相交于点G、H.(1)求EG:BG的值;(2)求证:AG=OG;(3)设AG=a,GH=b,HO=c,求a:b:c的值.23.如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接GA、GB、GC、GD、EF,若∠AGD=∠BGC. 图1 图2(1)求证:AD=BC;(2)求证:△AGD∽△EGF;(3)如图2,若AD、BC所在直线互相垂直,求的值.。





![河南新冠肺炎文件-豫建科[2020]63号+豫建科〔2019〕282号](http://img.jinchutou.com/static_www/Images/s.gif)






