
大一微积分期末试卷及答案.docx
4页本文格式为Word版,下载可任意编辑大一微积分期末试卷及答案 微积分期末试卷 一、选择题(6×2) 1?1.设f(x)?2cosx,g(x)?()sinx在区间(0,)内( )22Af(x)是增函数,g(x)是减函数Bf(x)是减函数,g(x)是增函数C二者都是增函数D二者都是减函数2、x?0时,e2x?cosx与sinx相比是( )A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( )A连续点 B可去休止点 C腾跃休止点 D无穷型休止点4、以下数列有极限并且极限为1的选项为( )1n?A Xn?(?1)n? B Xn?sinn211C Xn?n(a?1) D Xn?cosan1x 5、若f\x)在X0处取得最大值,那么必有( )Af'(X0)?o Bf'(X0)?oCf'(X0)?0且f''( X0)B>C( ) 1~5 FFFFT 四、计算题 11用洛必达法那么求极限limx2ex 2x?01212exex(?2x?3)x2?lim?lime??? 解:原式=lim?3x?01x?0x?0?2x2x12 若f(x)?(x3?10)4,求f''(0) f'(x)?4(x3?10)3?3x2?12x2(x3?10)3解:f''(x)?24x?(x3?10)3?12x2?3?(x3?10)2?3x2?24x?(x3?10)3?108x4(x3?10)2 ?f''(x)?04x3 求极限lim(cosx) x?02 4解:原式=limexx?0Incosx2?ex?0limx2Incosx41(?sinx)4Incosx?tanx?xcosx?lim2Incosx?lim?lim?lim?lim??22x?0xx?0x?0x?0x?0xxxx2224?原式?e?2 4 求y?(3x?1)53x?1的导数 x?2511解:Iny?In3x?1?Inx?1?Inx?23221531111y'??????y33x?12x?12x?2y'?(3x?1) 5 3tan?xdx 53 x?1?511????x?2??3x?12(x?1)2(x?2)?解:原式=?tan2xtanxdx??(sec2x?1)tanxdx =?sec2xtanxdx??tanxdxsinxdxcosx1 =?tanxdtanx??dcosxcosx1 =tan2x?Incosx?c2 =?tanxdtanx??6 求?xarctanxdx 1122解:原式=?arctanxd(x)?(xarctanx??x2darctanx)2212x2?1?1 =(xarctanx??dx)221?x1?1? =?x2arctanx??(1?)dx2?2?1?x?1?x2x =arctanx??c22 五、证明题。
1、证明方程x3?x?1?0有且仅有一正实根 证明:设f(x)?x3?x?1 ?f(0)??1?0,f(1)?1?0,且f(x)在?0,1?上连续?至少存在??(0,1),使得f'(?)?0即f(x)在(0,1)内至少有一根,即f(x)?0在(0,??)内至少有一实根假设f(x)?0在(0,??)有两不同实根x1,x2,x2?x1?f(x)在?x2,x2?上连续,在(x2,x2)内可导且f(x1)?f(x2)?0?至少???(x2,x2),s?tf(?)?0而f'(?)?3?2?1?1与假设相冲突?方程x3?x?1?0有且只有一个正实根 ?)2、证明arcsinx?arccosx?(?1?x?1 2 证明:设f(x)?arcsinx?arccosx11f'(x)???0,x???1,1?221?x1?x?f(x)?c?f(0)?arcsin0?arccos0?f(1)?arcsin1?arccos1??2 ?2f(?1)?arcsin(?1)?arccos(?1)??2?综上所述,f(x)?arcsinx?arccosx?六、应用题 1、描绘以下函数的图形 1 x解:1.Dy=(-?,0)?(0,+?)y?x2??2,x???1,1?12x3?12.y'=2x-2?xx2令y'?0得x?y''?2?312 2x3令y''?0,得x??13. 71794.补充点(?2,).(?,?).(1,2).(2,) 2222 5limf(x)??,?f(x)有铅直渐近线x?0 x?06如下图: 2.议论函数f(x)?x2?Inx2的单调区间并求极值 解:Df(x)?R22(x?1)(x?1)?(x?0) xx令f'(x)?0,得x1??1,x2?1f'(x)?2x? 由上表可知f(x)的单调递减区间为(??,?1)和(0,1) 单调递增区间为(?1,0)和(, 1??)且f(x)的微小值为f(-1)=f(1)=1 — 4 —。












