
主变差动保护.docx
11页本文格式为Word版,下载可任意编辑主变差动保护 阅历总结-主变差动养护片面 任百群 孔霄迪 2022/2/18 一、 从工程角度启程所理解的主变差动养护 关于接线组别和变比的归算思路 1、 影响主变差动养护的几个因素 差动养护由于其具有的选择性好、灵敏度高等一系列优点成为变压器、电动机、母线及短线路等元件的主养护这几种差动养护原理是根本一致的,但主变差动养护还要考虑到变压器接线组别、各侧电压等级、CT变比等因素的影响所以同其它差动养护相比,主变差动养护实现起来要更繁杂一些 变压器变比的影响:由于变压器变比不同,造成正常处境下,主变上下压侧一次电流不一致譬如:假设变压器变比为110KV/10KV,不考虑变压器本身励磁损耗的梦想处境下,流进高压侧电流为1A,那么流出低压侧为11A这很好理解,三相视在功率S= √3UI不考虑损耗,上下压侧流过功率不变,各侧电压不同,自然一次电流也不同 CT变比的影响:还是用上面的举例,假设变压器低压侧养护CT的变比是高压侧CT变比的11倍,就可以恰好抵消变压器变比的影响,从而做到正常处境下,流入养护装置(CT二次侧)的电流大小一致。
但现实处境是,CT变比是根据变压器容量来选择,况且CT变比都是标准的,同样变压器变比也是标准化的,这三者的关系根本无法保证上述的梦想比例假设变压器容量为20MKVA,110KV侧CT变比为200/5,低压侧CT变譬如果为2200/5即可保证一致但实际上低压侧CT变比只能选2000/5或2500/5,这自然造成了主变上下压侧CT二次电流不同 变压器接线组别的影响:变压器不同的接线组别,除Y/Y或△/△外,都会导致变压器上下压侧电流相位不同以工程中常见的Y/△-11而言,低压侧电流将超前高压侧电流30度另外假设Y侧为中性点接地运行方式,当高压侧线路发生单相接地故障时,主变Y侧绕组将流过零序故障电流,该电流将流过主变高压侧CT,相应地会传变到CT二次,而主变△侧绕组中感应出的零序电流仅能在其绕组内部流过,而无法流经低压侧开关CT 2、 为消释上述因素的影响而采取的根本方法 主变差动养护要考虑的一个根本原那么是要保证正常处境和区外故障时,用以对比的主变上下压侧电流幅值是相等,相位相反或一致(由差流计算采取的是矢量加和矢量减抉择,不过一般是让其相位相反),从而在理论上保证差流为0不管是电磁式或集成电路及现 在的微机养护,都要考虑上述三个因素的影响。
以下的议论,都以工程中最常见的Y/△-11而言) 1 电磁式养护(譬如工程中常见的LCD-4差动继电器),对于接线组别带来的影响(即相位误差)通过外部CT接线方式来解决主变为Y/△接线,高压侧CT二次采用△接线,低压侧CT二次采用Y接线,由养护CT完成相角的归算同时消释零序电流分量的影响电流由主变高压侧传变到低压侧时,相位前移30度,低压侧CT接成Y/Y,角度没有偏移高压侧CT接成Y/△,CT二次侧比一次侧(也即主变高压侧)相位也前移了30度这样就保证了上下压侧CT的二次电流同相位高压侧CT接成Y/△后,电流幅值增大了√3倍(实际上是线电流),在选择CT变比时,要考虑到这个因素,尽量让流入差动继电器的主变上下压侧电流相等由于CT都是标准变比,通常不能保证上下压侧二次电流相等,对此一般采取在外回路加装电流变换器(可以理解为一个多变比抽头的小CT)或着对具有速饱和铁芯的差动继电器,调整它的平衡线圈的匝数不过这两种方法,精度都不高 微机养护同传统养护相比,养护原理并没有太大的变化,主要是实现的方法和计算的精度有了很大提高早期有些微机差动养护,可能是运算速度不够的起因,相角归算还是采用外部CT接线来消释(如DSA早期某型号产品)。
现在的微机差动养护,CT都是采取Y/Y接线,相角归算由内部完成:通过电流矢量相减消释相角误差主变差动为分相差动,对于Y/△-11接线,同低压侧IAl相对比运算的并不是高压侧Iah,而是Iah*=Iah- Ibh(矢量减),这样得到的线电流Iah*,角度左移30度,同低压侧Ial同相位对于Y/ △-11接线,参与差流计算的Y侧3相电流量分别是:Iah*=Iah-Ibh、Ibh*=Ibh-Ich 、 Ich*=Ich-Iah(都为矢量减)对于Y/△-1接线,参与差流计算的Y侧3相电流量分别是:Iah*=Iah-Ich;Ibh*=Ibh-Iah 、Ich*=Ich-Ibh(都为矢量减)通过减超前相或滞后相 电流的不同,从而实现相角滞后或前移30度由于用WORD画矢量图太麻烦,此处省略示意图,大家可以自己画一下) 主变变比和CT变比造成的误差都是幅值上的差异,这方面的处理,对于微机养护而言,是分外轻易的,输入量(对△侧)或相位归算后的中间量(对Y侧)乘以相应的某个比例系数即可当然这个系数对Y侧,还要考虑到内部矢量相减,同时造成的幅值增大了√3倍目前国内绝大片面厂商(如南自厂等)的微机差动养护,是以一侧为基准(一般为高压Y侧),把另一侧的电流值通过一个比例系数换算到基准侧。
采取这种方法,装置定值和动作报告都是采用著名值(即多少安),譬如差动速断定值是18A等等我们公司的差动养护相位归算也是采用矢量相减,变比等因素造成的幅值归算采取的是Ie额定电流标幺值的概念,相应的定值整定和动作报告也都是采用Ie标幺值现场好多用户(包括公司一些新员工),对此感到较难理解,因此有必要细致解释一下 3、 以RCS9671/9679差动养护为例,解释Ie的概念 Ie是指根据变压器的实际容量求到的额定电流的标幺值我们常说的CT二次额 2 定电流是5A,这只是一个产品标准参数,而Ie是根据主变容量得到的,它所对应的电流著名值的概括数值,对主变的每一侧都是不同的 以以下参数为例:某台主变,容量31.5/20/31.5 兆伏安;变比110±4×2.5%/38.5±2×2.5%/11千伏;接线组别Yo/Y/△-12-11;CT变比200/5,500/5,2000/5;CT为Y/Y 额定电流计算公式 Ie=S / (√3 U)/ CT变比 S:主变容量,三侧都按最大容量来 U:本侧额定线电压 求一次额定电流 求2次额定电流 高压侧Ie=31500KVA/ (1.732*110KV)/ 200/5=165.337A / 40= 4.133A 中压侧Ie=31500KVA/ (1.732*38.5KV)/ 500/5=472.39A / 100= 4.723A 低压侧Ie=31500KVA/ (1.732*11KV)/ 2000/5=1653.37A / 400= 4.133A 当高压侧CT二次流出电流为4.133A 时,说明本侧流出的功率为变压器的额定功率,这就是Ie的物理含义,对中压侧、低压侧物理意义是一致的。
差动养护在每一侧采集到的电流除以该侧的Ie电流值,得到各侧电流相对于本侧额定电流的比例值(标幺值)采用各侧的Ie标幺值直接参与差流计算,而不是采用电流著名值,相应的定值及报告都是显示的是多少Ie譬如说高压侧二次电流为4.133A,程序会把这个值除以高压侧(4.133A),得到标幺值1 Ie;中压侧电流为-1.42A,得到标幺值-0.3 Ie;低压侧电流为-2.89A,得到标幺值-0.7 Ie程序计算差流时会把这三侧Ie相加求得到差流Id=0 Ie 留神:上例中提及的主变高压侧及中压侧的Ie,与装置中Ieh及Iem不是同一个量,后者是前者的√3倍 求Ie概括值的公式里包含了变压器容量、电压变比、每侧CT变比这几个参数基 于能量守衡的原理(疏忽主变本身损耗),计算时容量都采用同一个最大容量(应留神对于35KV侧,额定参数是20MVA,但计算时还是要用31.5MVA)得到的每侧额定值作为本 侧的基准,实际电流除以该基准,就得到可以直接用以统一运算的标幺值整个计算的过程,就消释了由主变电压变比和CT变比因素所造成的影响其它公司以一侧为基准,其它侧往基准侧归算我们的差动分别以各侧额定为基准,各侧实际电流都往本侧归算;思路都是一致的,但是我个人感觉还是Ie的概念更好一些,更符合物理意义。
举个通俗的例子,把高压侧电流比做黄金、低压侧电流比做白银,两者没法直接通过对比重量来对比价值 3 我们都把其折合成美元,就可以统一对比了Ie在差动归算中,就起了一个美元的作用 Ie是一个标幺值,是一个可以统一计算的中间度量单位(转换单位) 4、 以RCS9671/9679差动养护为例,从调试角度启程理解的差动归算思路 我们在本文一开头就提到了主变电压变比、CT变比还有接线组别的影响采用Ie的概念和计算方法后,可以消释掉电压变比和CT变比对幅值的影响对接线组别(相位)的影响,以RCS9671/9679程序里是这样做的若系统设置菜单里,接线组别设置为△/△(CT都是Y/Y接线,也即由装置内部完成归算),程序对电流采样数据不做相角上的任何归算处理,根据系统参数整定内容,计算出各侧Ie概括值,实际采样值同本侧Ie相除,得出本侧以Ie标幺值所表示的电流值参与差流计算当接线组别设置为Y/△-11,程序对Y侧电流采样数据首先举行相角调整,即参与差流计算的Iah*=Ia-Ib(矢量减), Ibh*=Ib-Ic,Ich*=Ic-Ia.这样一减,得到的矢量电流相位前移了30度,完成相位的归算。
但幅值同时也增大了√3倍(线电流和相电流的关系,这很好理解)程序里对矢量相减得到的值会同时固定除以√3 ,以保证只调整相位,不变更大小对Y/△-1,处理过程一样,只是矢量相减的相别发生一下变化:Iah*=Ia-Ic(矢量减),Ibh*=Ib-Ia,Ich*=Ic-Ib.也要固定的对幅值除以√3 要更加说明的是对接线组别Y/Y的变压器,程序对两侧均作了Y→△变换,目的主要是消释高压侧CT中可能流过的零序电流对差流的影响,确保高压侧发生区外接地故障时差动养护不误动 看到这里,细心的同事可能会察觉,在本文中Ie的计算公式同RCS9671/9679调试大纲里写的不大一样在《调试大纲》里,主变△侧Ie的计算公式同Y侧Ie的计算公式不同,Y侧Ie的计算公式:Ie=S / U / CT变比 (没有除以√3 )而本文中Ie的计算公式△侧和Y侧是一致的《调试大纲》里Y侧的公式并不是没有除以√3,而实际上是按Ie=(S / √3 U / CT变比)×√3,对Y侧Ie扩大了√3倍,从公式字面上看类似是没有除这个√3《调试大纲》这样写实际上已经考虑了Y侧√3的接线系数不过我个人认为,从物理概念上讲,Ie的计算公式对Y或△侧都是一样的,应按3相功率来考虑。
RCS系列主变养护程序是根据输入的主变参数自动计算Ie的,因此Ie与平衡系数紧密相关更加要留神的是装置中的差动起动电流值及差动速动定值都与Ie有关,装置中涉及到的Ie均为经过接线系数调整以后的各侧额定电流值在定值整定过程中,若装置报“平衡系数错”,可通过变更系统参数中的变压器容量来消释,但此时应留神将装置中的差动起动电流值及差动速动定值作相应变动 4 我们还是以上文所提到的主变参数来举例说明概括处理思路(该主变参数同 《RCS9671/79调试大纲》里举例的主变参数一致)设主接线为Y/△-11,CT为Y/Y接线我们计算出高压侧(Y侧)Ie=4.133A(按本文公式),《调试大纲》是乘以√3的, Ie=4。












