好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

人教版六年级数学下册第三单元知识点.doc

4页
  • 卖家[上传人]:博****1
  • 文档编号:409281937
  • 上传时间:2022-12-24
  • 文档格式:DOC
  • 文档大小:27.50KB
  • / 4 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 人教版第三单元《圆柱与圆锥》(一)圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的圆柱也可以由长方形卷曲而得到两种方式:1.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高其中,第一种方式得到的圆柱体体积较大2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的3、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆2)侧面的特征:圆柱的侧面是一个曲面3)高的特征:圆柱有无数条高4、圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S增=2nr2② 竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh5、圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果h=2nr,展开图形为正方形② 不沿着高展开,展开图形是平行四边形或不规则图形③ 无论怎么展开都得不到梯形6、圆柱的相关计算公式:底面积:S底=nr2底面周长:C底=nd=2nr侧面积:S侧=2nrh表面积:S表=2S底+S狈0=2nr2+2nrh体积:V柱=nWh考试常见题型:①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积③ 已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积④ 已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积⑤ 已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类(二)圆锥1、圆柱的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的圆锥也可以由扇形卷曲而得到2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高3、圆锥的特征:(1)底面的特征:圆锥的底面一个圆。

      2)侧面的特征:圆锥的侧面是一个曲面3)高的特征:圆锥有一条高4、圆柱的切割:①横切:切面是圆②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即S增=2rh5、圆锥的相关计算公式:底面积:S底=nr2底面周长:C底=nd=2nr体积:V锥=3nr2h考试常见题型:①已知圆锥的底面积和高,求体积,底面周长② 已知圆锥的底面周长和高,求圆锥的体积,底面积③ 已知圆锥的底面周长和体积,求圆锥的高,底面积以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算(三)圆柱和圆锥的关系1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍24、圆柱与圆锥等底等高,体积相差3Sh题型总结① 直接利用公式:分析清楚求的的是表面积,侧面积、底面积、体积分析清楚半径变化导致底面周长、侧面积、底面积、体积的变化分析清楚两个圆柱(或两个圆锥)半径、底面积、底面周长、侧面积、表面积、体积之比② 圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间)③ 横截面的问题④ 浸水体积问题:(水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体,正方体⑤ 等体积转换问题:一个圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的问题,注意不要乘以*苏教版第三单元《解决问题的策略》学会用“转化”的策略寻求解决问题的思路,并能根据具体的问题确定合理的解题方法,从而有效的解决问题。

      北师大版第三单元《图形的运动》本册的图形变换知识在原来基础上进一步加深,要求能在方格纸上画出平移、旋转、轴对称后的图形,具体:第一种旋转:要说明绕哪个点,顺时针还是逆时针,旋转多少度(90度、180度、270度)例如:将图形B绕点0顺时针/逆时针旋转90°得到图形C;绕中心点旋转的方向:顺时针:即顺着钟表时针走的方向,从上往右走,再往下,最后向上逆时针:和顺时针的方向相反,从上往左走,再往下,最后向上第二种平移:要说明向什么方向(上、下、左、右)平移几个例如:将图形A向上/下/左/右平移4格得到图形B;第三种作对称图形:要说明是关于哪条直线作哪个图形的对称图形例如:以直线MN为对称轴,作图形C的轴对称图形D。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.