好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2025年中考数学二轮复习《压轴题》专项练习01(含答案).docx

17页
  • 卖家[上传人]:gu****iu
  • 文档编号:595337353
  • 上传时间:2024-11-12
  • 文档格式:DOCX
  • 文档大小:322.72KB
  • / 17 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 2025年中考数学二轮复习《压轴题》专项练习01如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c(a<0)与x轴分别交于点A和点B(1,0),与y轴交于点C,对称轴为直线x=﹣1,且OA=OC,P为抛物线上一动点.(1)直接写出抛物线的解析式;(2)如图2,连接AC,当点P在直线AC上方时,求四边形PABC面积的最大值,并求出此时P点的坐标;(3)设M为抛物线对称轴上一动点,当P,M运动时,在坐标轴上是否存在点N,使四边形PMCN为矩形?若存在,直接写出点P及其对应点N的坐标;若不存在,请说明理由.二次函数y=ax2+bx+c交x轴于点A(﹣1,0)和点B(﹣3,0),交y轴于点C(0,﹣3).(1)求二次函数的解析式;(2)如图1,点E为抛物线的顶点,点T(0,t)为y轴负半轴上的一点,将抛物线绕点T旋转180°,得到新的抛物线,其中B,E旋转后的对应点分别记为B′,E′,当四边形BEB'E'的面积为12时,求t的值;(3)如图2,过点C作CD∥x轴,交抛物线于另一点D.点M是直线CD上的一个动点,过点M作x轴的垂线,交抛物线于点P.当以点B、C、P为顶点的三角形是直角三角形时,求所有满足条件的点M的坐标.如图,在平面直角坐标系xOy中,抛物线E:y=﹣(x﹣m)2+2m2(m<0)的顶点P在抛物线F:y=ax2上,直线x=t与抛物线E,F分别交于点A,B.(1)求a的值;(2)将A,B的纵坐标分别记为yA,yB,设s=yA﹣yB,若s的最大值为4,则m的值是多少?(3)Q是x轴的正半轴上一点,且PQ的中点M恰好在抛物线F上.试探究:此时无论m为何负值,在y轴的负半轴上是否存在定点G,使∠PQG总为直角?若存在,请求出点G的坐标;若不存在,请说明理由.如图,在平面直角坐标系中,已知直线y=2x+8与x轴交于点A、与y轴交于点B,抛物线y=﹣x2+bx+c经过点A、B.(1)求抛物线的表达式;(2)P是抛物线上一点,且位于直线AB上方,过点P作PM∥y轴、PN∥x轴,分别交直线AB于点M、N.①当MN=AB时,求点P的坐标;②联结OP交AB于点C,当点C是MN的中点时,求的值.如图,在平面直角坐标系中,O为坐标原点,直线y=﹣x+b与x轴交于点B,与y轴交于点C,抛物线y=ax2﹣5ax﹣6a(a<0)经过B、C两点,与x轴交于另一点A.(1)求a,b的值;(2)点P段AB上,点Q段PC的延长线上,过点Q作y轴的平行线,交直线BC于点F,过点Q作y轴的垂线,垂足为点E,交对称轴左侧的抛物线于点D,设点P的横坐标为t,线段QF的长为d,当d与t之间的函数关系式d=﹣t+4时,求D的坐标.(3)在(2)的条件下,连接CD,将△CQD沿直线CD翻折,得到△CQ′D,求t为何值时,点Q′恰好落在抛物线上,并求出此时点Q′的坐标以及tan∠DCQ的值.如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=﹣x2+bx+c经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点.(1)求抛物线的解析式及点C的坐标;(2)若点P在第二象限内,过点P作PD⊥x轴于D,交AB于点E.当点P运动到什么位置时,线段PE最长?此时PE等于多少?(3)如果平行于x轴的动直线l与抛物线交于点Q,与直线AB交于点N,点M为OA的中点,那么是否存在这样的直线l,使得△MON是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连结AB、AE、BE.已知tan∠CBE=,A(3,0),D(-1,0),E(0,3).(1)求抛物线的解析式及顶点B的坐标;(2)求证:CB是△ABE外接圆的切线;(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,若存在,直接写出点P的坐标;若不存在,请说明理由;(4)设△AOE沿x轴正方向平移t个单位长度(0<t≤3)时,△AOE与△ABE重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围. 在平面直角坐标系中,已知抛物线y=ax2+bx+c(a≠0)经过点A(1,0)、B(4,0),C(0,2)三点,直线y=kx+t经过B、C两点,点D是抛物线上一个动点,过点D作y轴的平行线,与直线BC相交于点E.(1)求直线和抛物线的解析式;(2)当点D在直线BC下方的抛物线上运动,使线段DE的长度最大时,求点D的坐标;(3)点D在运动过程中,若使O、C、D、E为顶点的四边形为平行四边形时,请直接写出满足条件的所有点D的坐标.已知抛物线C1:y=mx2+n与x轴于A,B两点,与y轴交于点C,△ABC为等腰直角三角形,且n=﹣1.(1)求抛物线C1的解析式;(2)将C1向上平移一个单位得到C2,点M、N为抛物线C2上的两个动点,O为坐标原点,且∠MON=90°,连接点M、N,过点O作OE⊥MN于点E.求点E到y轴距离的最大值;(3)如图,若点F的坐标为(0,﹣2),直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线C1有且只有一个公共点,设点G的横坐标为b,点H的横坐标为a,则a﹣b是定值吗?若是,请求出其定值,若不是,请说明理由.答案解:(1)∵抛物线的对称轴是直线x=﹣1,抛物线交x轴于点A,B(1,0),∴A(﹣3,0),∴OA=OC=3,∴C(0,3),∴可以假设抛物线的解析式为y=a(x+3)(x﹣1),把(0,3)代入抛物线的解析式,得a=﹣1,∴抛物线的解析式为y=﹣x2﹣2x+3;(2)如图(2)中,连接OP.设P(m,﹣m2﹣2m+3),S=S△PAO+S△POC+S△OBC,=×3×(﹣m2﹣2m+3)××3×(﹣m)+×1×3=(﹣m2﹣3m+4)=﹣(m+)2+,∵﹣<0,∴当m=﹣时,S的值最大,最大值为,此时P(﹣,);(3)存在,理由如下:如图3﹣1中,当点N在y轴上时,四边形PMCN是矩形,此时P(﹣1,4),N(0,4);如图3﹣2中,当四边形PMCN是矩形时,设M(﹣1,n),P(t,﹣t2﹣2t+3),则N(t+1,0),由题意,,解得,消去n得,3t2+5t﹣10=0,解得t=,∴P(,),N(,0)或P′(,),N′(,0).综上所述,满足条件的点P(﹣1,4),N(0,4)或P(,),N(,0)或P′(,),N′(,0).解:(1)∵二次函数过点A(﹣1,0),B(﹣3,0),∴设抛物线解析式为y=a(x+1)(x+3),将C(0,﹣3)代入,得:3a=3,解得:a=﹣1,∴二次函数的解析式为:y=﹣x2﹣4x﹣3;(2)如图1,连接EE′、BB′,延长BE,交y轴于点Q.由(1)得y=﹣x2﹣4x﹣3=﹣(x+2)2+1,∴抛物线顶点E(﹣2,1),设直线BE的解析式为y=kx+b,∵B(﹣3,0),E(﹣2,1),∴,解得:,∴直线BE的解析式为:y=x+3,∴Q(0,3),∵抛物线y=﹣x2﹣4x﹣3绕点T(0,t)旋转180°,∴TB=TB′,TE=TE′,∴四边形BEB′E′是平行四边形,∴S△BET=S四边形BEB′E′=×12=3,∵S△BET=S△BQT﹣S△EQT=×(3﹣2)×TQ=TQ,∴TQ=6,∴3﹣t=6,∴t=﹣3;(3)设P(x,﹣x2﹣4x﹣3),①当∠BP1C=90°时,∠N1P1B=∠P1CE,∴tan∠N1P1B=tan∠P1CE,∴=,∵BN1=﹣x2﹣4x﹣3,P1N1=x+3,P1E=﹣x,EC=﹣x2﹣4x,∴=,化简得:x2+5x+5=0,解得:x1=,x2=(舍去),②当∠BP2C=90°时,同理可得:x2+5x+5=0,解得:x1=(舍去),x2=,∴M点的坐标为(,﹣3)或(,﹣3),③当∠P3BC=90°时,由△BM3C是等腰直角三角形,得:△N3BP3也是等腰直角三角形,∴N3B=N3P3,∴﹣x2﹣4x﹣3=x+3,化简得:x2+5x+6=0,解得:x1=﹣2,x2=﹣3(舍去),∴M点的坐标为(﹣2,﹣3);④当∠BCP4=90°时,由△BOC是等腰直角三角形,可得△N4P4C也是等腰直角三角形,∴P4N4=CN4,∴﹣x=﹣3﹣(﹣x2﹣4x﹣3),化简得:x2+5x=0,解得:x1=﹣5,x2=0(舍去),∴M点的坐标为(﹣5,﹣3),综上所述:满足条件的M点的坐标为(,﹣3)或(,﹣3)或(﹣2,﹣3)或(﹣5,﹣3).解:(1)由题意可知,抛物线E:y=﹣(x﹣m)2+2m2(m<0)的顶点P的坐标为(m,2m2),∵点P在抛物线F:y=ax2上,∴am2=2m2,∴a=2.(2)∵直线x=t与抛物线E,F分别交于点A,B,∴yA=﹣(t﹣m)2+2m2=﹣t2+2mt+m2,yB=2t2,∴s=yA﹣yB=﹣t2+2mt+m2﹣2t2=﹣3t2+2mt+m2=﹣3(t﹣m)2+m2,∵﹣3<0,∴当t=m时,s的最大值为m2,∵s的最大值为4,∴m2=4,解得m=±,∵m<0,∴m=﹣.(3)存在,理由如下:设点M的坐标为n,则M(n,2n2),∴Q(2n﹣m,4n2﹣2m2),∵点Q在x轴正半轴上,∴2n﹣m>0且4n2﹣2m2=0,∴n=﹣m,∴M(﹣m,m2),Q(﹣m﹣m,0).如图,过点Q作x轴的垂线KN,分别过点P,G作x轴的平行线,与KN分别交于K,N,∴∠K=∠N=90°,∠QPK+∠PQK=90°,∵∠PQG=90°,∴∠PQK+∠GQN=90°,∴∠QPK=∠GQN,∴△PKQ∽△QNG,∴PK:QN=KQ:GN,即PKGN=KN.∵PK=﹣m﹣m﹣m=﹣m﹣2m,KQ=2m2,GN=﹣m﹣m,∴(﹣m﹣2m)(﹣m﹣m)=2m2QN,解得QN=+2.∴G(0,﹣﹣2).解:(1)∵直线y=2x+8与x轴交于点A、与y轴交于点B,∴令x=0,则y=8,令y=0,则x=﹣4,∴B(0,8),A(﹣4,0),∵抛物线y=﹣x2+bx+c经过点A、B,∴,∴,∴抛物线的表达式为:y=﹣x2﹣2x+8;(2)①∵P是抛物线上一点,且位于直线AB上方,过点P作PM∥y轴、PN∥x轴,分别交直线AB于点M、N,∴PM⊥PN,∠PNM=∠BAO,∴∠MPN=∠AOB=90°,∴△PMN∽△OBA,∴,设点M的横坐标为m(﹣4<m<0),则M(m,2m+8),P(m,﹣m2﹣2m+8),∴PM=﹣m2﹣2m+8﹣(2m+8)=﹣m2﹣4m,。

      点击阅读更多内容
      相关文档
      2025年中考化学考前老师再叮嘱.pptx 2025会考一轮复习:第19讲 人体对外界环境的感知、神经系统的组成课件.pptx 2025会考一轮复习:第18讲 人体内废物的排出课件.pptx 2025年 中考道德与法治 认识、启示、警示类型专项训练(课件版).pptx 2025年 中考道德与法治 图表题专项训练(课件版).pptx 中考英语最实用日常用语、口语、谚语等归纳整理.docx 用所给单词的正确形式填空100题(期末题型考前过关练)-2023-2024学年八年级英语上册单元模块满分必刷题(人教版).docx 语法填空【专题训练】-2023-2024学年七年级英语上学期期中考点大串讲(人教版).docx 书面表达【专题训练】-2023-2024学年七年级英语上学期期中考点大串讲(人教版).docx 选择压轴题、多图归纳分析题必刷题(解析版)-2023-2024学年九年级物理第一学期期末挑战满分训练.docx 人教版物理九年级下册课时检测卷-第1节 家庭电路.doc 用所给单词的正确形式填空100题(期末题型考前过关练)-2023-2024学年七年级英语上册单元模块满分必刷题(人教版).docx 完型填空【专题训练】-2023-2024学年七年级英语上学期期中考点大串讲(人教版).docx 全册易错知识点100题(期末题型考前过关练)-2023-2024学年七年级英语上册单元模块满分必刷题(人教版).docx 完形填空15篇(10空)(期末题型考前过关练)-2023-2024学年九年级英语全一册单元模块满分必刷题(人教版).docx 山西省晋中市榆次区2025届九年级下学期中考一模语文试卷.docx 全册重点单词100题(期末题型考前过关练)-2023-2024学年八年级英语上册单元模块满分必刷题(人教版).docx 人教版物理九年级下册课时检测卷-第2节核能.doc 清单03 U3重点知识点归纳+专题过关【考点清单】(解析版)-2023-2024学年九年级英语上学期期中考点大串讲(牛津译林版).docx 全一册重点单词115题(期末题型考前过关练)-2023-2024学年九年级英语全一册单元模块满分必刷题(人教版).docx
      猜您喜欢
      中考数学二轮培优重点突破讲练专题16 一线三等角相似模型(学生版).docx 2025年中考数学一轮复习 统计与概率 解答题练习六(含答案).docx 中考数学二轮培优重点突破讲练专题06 三角形中的双角平分线模型(教师版).docx 2025年中考数学二轮复习《压轴题》专项练习2(含答案).docx 2025年中考数学二轮复习压轴题培优练习 动点综合问题(含答案).docx 2025年中考数学二轮复习《函数实际问题》专题巩固练习(六)(含答案).doc 中考数学二轮培优重点突破讲练专题10 几何变换中的三角形全等模型(学生版).docx 2025年中考数学二轮复习《压轴题》专项练习二(含答案).docx 中考数学二轮培优重点突破讲练专题11 全等三角形中的一线三等角模型(教师版).docx 中考数学二轮培优重点突破讲练专题02 角平分线模型(学生版).docx 2025年中考数学二轮复习《压轴题》专项练习三(含答案).docx 2025年中考数学一轮复习《计算题》专项练习04(含答案).docx 2025年中考数学二轮复习《压轴题》专项练习(一)(含答案).docx 2025年中考数学一轮复习 解直角三角形 解答题练习二(含答案).docx 中考数学二轮培优重点突破讲练专题04 三角形中的8字模型和燕尾模型(学生版).docx 中考数学二轮培优重点突破讲练专题16 一线三等角相似模型(教师版).docx 2025年中考数学一轮复习《计算题》专项练习3(含答案).docx 2025年中考数学二轮复习压轴题培优练习 圆存在问题(含答案).docx 2025年中考数学二轮复习压轴题培优练习 直角三角形问题(含答案).docx 2025年中考数学二轮复习《压轴题》专项练习四(含答案).docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.