
中考必会几何模型:截长补短辅助线模型.doc
6页截长补短辅助线模型模型:截长补短 如图①,若证明线段AB、CD、EF之间存在EF=AB+CD,可以考虑截长补短法. 截长法:如图②,在EF上截取EG=AB,再证明GF=CD即可.补短法:如图③,延长AB至H点,使BH=CD,再证明AH=EF即可.模型分析截长补短的方法适用于求证线段的和差倍分关系. 截长,指在长线端中截取一段等于已知的线段;补短,指将一条短线端延长,延长部分等于已知线段. 该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法构造全等三角形来完成证明过程.模型实例例1:如图,已知在△ABC中,∠C=2∠B,∠1=∠2 . 求证:AB=AC+CD .证法一,截长法:如图①,在AB上取一点E,使AE=AC,连接DE.∵AE=AC,∠1=∠2,AD=AD,∴△ACD≌△AED ,∴CD=DE,∠C=∠3 .∵∠C=2∠B,∴∠3=2∠B=∠4+∠B ,∴∠4=∠B ,∴DE=BE ,∴CD=BE.∵AB=AE+BE,∴AB=AC+CD . 证法二,补短法:如图②,延长AC到点E,使CE=CD,连接DE .∵CE=CD,∴∠4=∠E .∵∠3=∠4+∠E,∴∠3=2∠E .∵∠3=2∠B,∴∠E=∠B .∵∠1=∠2,AD=AD,∴△EAD≌△BAD,∴AE=AB.又∵AE=AC+CE,∴∴AB=AC+CD .例2:如图,已知OD平分∠AOB,DC⊥OA于点C,∠A=∠GBD . 求证:AO+BO=2CO .证明:段AO上取一点E,使CE=AC,连接DE .∵CD=CD,DC⊥OA,∴△ACD≌△ECD,∴∠A=∠CED .∵∠A=∠GBD ,∴∠CED=∠GBD ,∴1800-∠CED=1800-∠GBD ,∴∠OED=∠OBD .∵OD平分∠AOB,∴∠AOD=∠BOD .∵OD=OD,∴△OED≌△OBD ,∴OB=OE,∴AO+BO=AO+OE=OE+2CE+OE=OE+CE+OE+CE=2(CE+OE)=2CO .跟踪练习1. 如图,在△ABC中,∠BAC=600,AD是∠BAC的平分线,且AC=AB+BD . 求∠ABC的度数 .【答案】证法一:补短延长AB到点E,使BE=BD . 在△BDE中,∵BE=BD,∴∠E=∠BDE,∴∠ABC=∠BDE+∠E=2∠E .又∵AC=AB+BD,∴AC=AB+BE,∴AC=AE .∵AD是∠BAC的平分线,∠BAC=600,∴∠EAD=∠CAD=600÷2=300 .∵AD=AD,∴△AED≌△ACD,∴∠E=∠C .∵∠ABC=2∠E,∴∠ABC=2∠C .∵∠BAC=600,∴∠ABC+∠C=1800-600=1200,∴∠ABC=1200,∴∠ABC=800 .证法二:在AC上取一点F,使AF=AB,连接DF.∵AD是∠BAC的平分线,∴∠BAD=∠FAD .∵AD=AD,∴△BAD≌△FAD,∴∠B=∠AFD,BD=FD .∵AC=AB+BD,AC=AF+FC∴FD=FC ,∴∠FDC=∠C .∵∠AFD=∠FDC+∠C,∴∠B=∠FDC+∠C=2∠C .∵∠BAC+∠B+∠C=1800,∴∠ABC=1200,∴∠ABC=800 .2. 如图,在△ABC中,∠ABC=600,AD、CE分别平分∠BAC、∠ACB . 求证:AC=AE+CD .【答案】如图,在AC边上取点F,使AE=AF,连接OF .∵∠ABC=600,∴∠BAC+∠ACB=1800-∠ABC=1200 .∵AD、CE分别平分∠BAC、∠ACB,∴∠OAC=∠OAB=,∠OCA=∠OCB=,∴∠AOE=∠COD=∠OAC+∠OCA==600,∴∠AOC=1800-∠AOE=1200 .∵AE=AF,∠EAO=∠FAO,AO=AO,∴△AOE≌△AOF(SAS),∴∠AOF=∠AOE=600,∴∠COF=∠AOC-∠AOF=600,∴∠COF=∠COD .∵CO=CO,CE平分∠ACB,∴△COD≌△COF(ASA),∴CD=CF .∵AC=AF+CF,∴AC=AE+CD,3. 如图,∠ABC+∠BCD=1800,BE、CE分别平分∠ABC、∠DCB .求证:AB+CD=BC .【答案】证法一:截长如图①,在BC上取一点F,使BF=AB,连接EF .∵∠1=∠ABE,BE=BE,∴△ABE≌△FBE,∴∠3=∠4 .∵∠ABC+∠BCD=1800, BE、CE分别平分∠ABC、∠DCB,∴∠1+∠2=∠ABC+∠DCB =×1800=900 ,∴∠BEC=900 ,∴∠4+∠5=900,∠3+∠6=900 .∵∠3=∠4 ,∴∠5=∠6 .∵CE=CE, ∠2=∠DCE ,∴△CEF≌△CED,∴CF=CD .∵BC=BF+CF,AB=BF,∴AB+CD=BC证法二:补短如图②,延长BA到点F,使BF=BC,连接EF .∵∠1=∠ABE,BE=BE,∴△BEF≌△BEC,∴EF=EC,∠BEC=∠BEF .∵∠ABC+∠BCD=1800, BE、CE分别平分∠ABC、∠DCB,∴∠1+∠2=∠ABC+∠DCB =×1800=900 ,∴∠BEC=900 ,∴∠BEF=∠BEC=900,∴∠BEF+∠BEC=1800,∴C、E、F三点共线 .∵AB∥CD,∴∠F=∠FCD .∵EF=EC,∠FEA=∠DEC,∴△AEF≌△DEC,∴AF=CD .∵BF=AB+AF,∴BC=AB+CD .4. 如图,在△ABC中,∠ABC=900,AD平分∠BAC交BC于D,∠C=300,BE⊥AD于点E . 求证:AC-AB=2BE .【答案】延长BE交AC于点M .∵BE⊥AD,∴∠AEB=∠AEM=900 .∵∠3=900-∠1,∠4=900-∠2,∠1=∠2,∴∠3=∠4,∴AB=AM .∵BE⊥AE,∴BM=2BE .∵∠ABC=900,∠C=300,∴∠BAC=600 .∵AB=AM,∴∠3=∠4=600,∴∠5=900-∠3=300,∴∠5=∠C,∴CM=BM,∴AC-AB=CM=BM=2BE .5. 如图,Rt△ACB中,A=BC,AD平分∠BAC交BC于点D,CE⊥AD交AD于点F,交AB于点E . 求证:AD=2DF+CE .【答案】在AD上取一点G,使AG=CE,连接CG .∵CE⊥AD,∴∠AFC=900,∠1+∠ACF=900 .∵∠2+∠ACF=900,∴∠1=∠2 .∵AC=BC,AG=CE,∴△ACG≌△CBE,∴∠3=∠B=450,∴∠2+∠4=900-∠3=450 .∵∠2=∠1=∠BAC=22.50,∴∠4=450-∠2=22.50,∴∠4=∠2=22.50 .又∵CF=CF,DG⊥CF,∴△CDF≌△CGF,∴DF=GF .∵AD=AG+DG,∴AD=CE+2DF .6. 如图,五边形ABCDE中,AB=AE,BC+DE=CD,∠B+∠E=1800 . 求证:AD平分∠CDE .【答案】如图,延长CB到点F,使BF=DE,连接AF、AC .∵∠1+∠2=1800,∠E+∠1=1800,∴∠2=∠E .∵AB=AE,∠2=∠E,BF=DE,∴△ABF≌△AED,∴∠F=∠4,AF=AD .∵BC+DE=CD,∴BC+BF=CD,即FC=CD .又∵AC=AC,∴△ACF≌△ACD,∴∠F=∠3 .∵∠F=∠4,∴∠3=∠4,∴AD平分∠CDE . 1。












