好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

SPSS学习报告总结心得.doc

4页
  • 卖家[上传人]:枫**
  • 文档编号:439902809
  • 上传时间:2023-02-15
  • 文档格式:DOC
  • 文档大小:18.50KB
  • / 4 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 应用统计分析学习报告本科的时候有概率统计和数理分析的基础,但是从来没有接触过应用统计 分析的东西,SPSS也只是听说过,从来没有学过一直以为这一块儿会比较难, 这学期最初学的时候,因为没有认真看老师给的英文教材,课下也没有认真搜 集相关资料,所以学起来有些吃力,总感觉听起来一头雾水老师说最后的考 核是通过提交学习报告,然后我从图书馆里借了些教材查了些资料,发现很多 问题都弄清楚了结合软件和书上的例子,实战一下,发现SPSS的功能相当强 大最后总结出这篇报告,以巩固所学SPSS,全称是 Statistical Product and Service Solutions,即“统计产品与服 务解决方案”,是 IBM 公司推出的一系列用于统计学分析运算、数据挖掘、预 测分析和决策支持任务的软件产品及相关服务的总称,也是世界上公认的三大 数据分析软件之一 SPSS 具有统计分析功能强大、操作界面友好、与其他软件 交互性好等特点,被广泛应用于经济管理、医疗卫生、自然科学等各个领域 具体到管理方面, SPSS 也是一个进行数据分析和预测的强大工具这门课中也 会用到AMOS软件关于 SPSS 的书,很多都是首先介绍软件的。

      这个软件易于安装,我装的 是的,虽然有一些改变和优化,但是主体都是一样的,而且都是可视化界面, 用起来很方面且容易上手所以,我学习的重点是卡方检验和T检验、方差分 析、相关分析、回归分析、因子分析、结构方程模型等方法的适用范围、应用 价值、计算方式、结果的解释和表述首先是T检验这一部分由于参数检验的基础不牢固,这部分也是最初开 始接触应用统计的东西,学起来很多东西拿不准,比如说原假设默认的是什么 结果出来后依然分不清楚是接受原假设还是拒绝原假设不过现在弄懂了这 部分很有用的是T检验T检验应用于当样本数较小时,且样本取自正态总体 同时做两样本均数比较时,还要求两样本的总体方差相等时,已知一个总体均 数u,可得到一个样本均数及该样本标准差,样本来自正态或近似正态总体T 检验分为单样本 T 检验、独立样本 T 检验、配对样本 T 检验其中,单样本 T 检验是样本均数与总体均数的比较的T检验,用于推断样本所代表的未知总体 均数口与已知的总体均数uo有无差别;独立样本T检验主要用于检验两个样本 是否来自具有相同均值的总体,即比较两个样本的均值是否相同,要求两个样 本是相互独立的;配对样本T检验中,要正确理解“配对”的含义,主要用于 检验两个有联系的正态总体的均值是否有显著差异,跟独立检验的区别就是样 本是否是配对样本。

      这几个方法用软件操作起来都是相对简单的,关键是分清 楚什么时候用这个什么时候用那个然后是方差分析方差分析就是将索要处理的观测值作为一个整体,按照 变异的不同来源把观测值总变异的平方和以及自由度分解为两个或多个部分, 获得不同变异来源的均值与误差均方,通过比较不同变异来源的均方与误差均 方,判断各样本所属总体方差是否相等方差分析主要包括单因素方差分析、 多因素方差分析和协方差分析等这一部分在学习的过程中出现一些问题,就 是用 SPSS 来操作的时候分不清观测变量和控制变量,如果反了的话会导致结 果的不准确其次,对 Bonferroni、Tukey、Scheffe 等方法的使用目的不清楚, 现在基本掌握了多重比较方法选择:一般如果存在明确的对照组,要进行的是 验证性研究,即计划好的某两个或几个组间(和对照组)的比较宜用 Bonferroni(LSD)法;若需要进行多个均数间的两两比较,且各组个案数相等, 适宜用 Tukey 法;其他情况宜用 Scheffe 法最后,对方差齐性检验、多重比较 检验、趋势检验理解不够透彻,在方差检验中,Post Hoc键有LSD的选项:当 方差分析 F 检验否定了原假设,即认为至少有两个总体的均值存在显著性差异 时,须进一步确定是哪两个或哪几个均值显著地不同,则需要进行多重比较来 检验。

      LSD即是一种多因变量的三个或三个以上水平下均值之间进行的两两比 较检验相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的 现象探讨其相关方向以及相关程度,是研究之间的的一种相关分析研究现象 之间是否相关、相关的方向和密切程度,一般不区别自变量或因变量主要有 双变量相关分析、偏相关、距离相关几个方法双变量相关分析是相关分析中 最常使用的分析过程,主要用于分析两个变量之间的线性相关分析,可以根据 不同的数据类型和条件,选用Pearson积差相关、Spearman等级相关和Kendall 的 tau-b 等级相关当数据文件包括多个变量时,直接对两个变量进行相关分析 往往不能真实反映二者之间的关系,此时就需要用到偏相关分析,从中剔除其 他变量的线性影响距离相关分析是对观测变量之间差异度或相似程度进行的 测量,其中距离需要弄清楚,距离分析是对观测量之间相似或不相似程度的一 种测度,是计算一对观测量之间的广义距离这些相似性或距离测度可以用于 其他分析过程,例如因子分析、聚类分析或多维定标分析,有助于分析复杂的 数据集接着是回归分析研究的是现象之间是否相关、相关的方向和密切程度, 一般不区别自变量或因变量。

      而回归分析则要分析现象之间相关的具体形式, 确定其因果关系,并用来表现其具体关系比如说,从相关分析中我们可以得 知“质量”和“用户满意度”变量密切相关,但是这两个变量之间到底是哪个 变量受哪个变量的影响,影响程度如何,则需要通过回归分析方法来确定回 归分析的目的在于了解两个或多个变量间是否相关、相关方向与强度,并建立 数学模型以便观察特定变量来预测研究者感兴趣的变量运用十分广泛,回归 分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自 变量和因变量之间的关系类型,可分为线性回归分析和分析如果在回归分析 中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示, 这种回归分析称为一元线性回归分析如果回归分析中包括两个或两个以上的 自变量,且因变量和自变量之间是,则称为分析应用回归分析时应首先确定 变量之间是否存在相关关系,如果变量之间不存在相关关系,对这些变量应用 回归预测法就会得出错误的结果正确应用回归分析预测时应注意:①用定性 分析判断现象之间的依存关系;②避免回归预测的任意外推;③应用合适的数 据资料;接下来是因子分析因子分析是指研究从变量群中提取共性因子的统计技 术。

      最早由心理学家.斯皮尔曼提出他发现学生的各科成绩之间存在着一定的 相关性,一科成绩好的学生,往往其他各科成绩也比较好,从而推想是否存在 某些潜在的共性因子,或称某些一般智力条件影响着学生的学习成绩因子分 析可在许多变量中找出隐藏的具有代表性的因子将相同本质的变量归入一个 因子,可减少变量的数目,还可检验变量间关系的假设因子分析的主要目的 是用来描述隐藏在一组测量到的变量中的一些更基本的,但又无法直接测量到 的隐性变量从显性的变量中得到因子的方法有两类一类是探索性因子分析, 另一类是验证性因子分析探索性因子分析不事先假定因子与测度项之间的关 系,而让数据“自己说话”而验证性因子分析假定因子与测度项的关系是部分 知道的,即哪个测度项对应于哪个因子,虽然我们尚且不知道具体的系数这 一部分不能用SPSS来操作,要用AMOS,用起来也很方便最后一部分学习的是结构方程模型结构方程模型是一种融合了因素分析 和的多元统计技术它的强势在于对多变量间交互关系的在近三十年内,其 大量应用于及的领域里,并在近几年开始逐渐应用于市场研究中结构方程模 型是对顾客满意度的研究采用的模型方法之一其目的在于探索事物间的因果 关系,并将这种关系用因果模型、路径图等形式加以表述。

      结构方程模型与传 统的不同,结构方程分析能同时处理多个因变量,并可比较及评价不同的理论 模型与传统的探索性因子分析不同,在结构方程模型中,我们可以提出一个 特定的因子结构,并检验它是否吻合数据通过结构方程多组分析,我们可以 了解不同组别内各变量的关系是否保持不变,各因子的均值是否有显著差异这门课要学习完了,整个学习的过程是充满曲折和挑战的,我见证了自己 从一无所知到困惑迷茫再到略懂再到会用的过程甚至学完之后有些问题还没 有彻底搞清楚,自己接下来还会不断的探索的 SPSS 是个很神奇的工具,结合 AMOS和EXCEL更是如虎添翼,相信学习了 SPSS在以后的论文和数据分析中 很有用这门课给我的感觉是看起来很难,但是实际学起来就好很多,因为当 我结合具体实例和软件的时候,很多抽象的问题就豁然开朗了但是想给老师 一个建议,这门课需要很强的统计和概率论的基础,要不然就会很难听懂或者 听得半懂然后这门课的很多方法的相关资料都是用在医疗卫生、自然科学领 域的,在管理中的应用的资料不怎么多老师希望我们上课的时候结合在管理 中的应用来学习,但是资料有限,希望老师在这个方面多给学生一些引导。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.