好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2024届广东省茂名市高三下学期第三次调研考试数学试题.doc

18页
  • 卖家[上传人]:城***
  • 文档编号:376597485
  • 上传时间:2024-01-09
  • 文档格式:DOC
  • 文档大小:1.98MB
  • / 18 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 2024届广东省茂名市高三下学期第三次调研考试数学试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.中,如果,则的形状是( )A.等边三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形2.函数的对称轴不可能为( )A. B. C. D.3.已知向量,(其中为实数),则“”是“”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},则A∩B=(  )A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}5.运行如图所示的程序框图,若输出的值为300,则判断框中可以填( )A. B. C. D.6.由实数组成的等比数列{an}的前n项和为Sn,则“a1>0”是“S9>S8”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.若复数(为虚数单位),则的共轭复数的模为( )A. B.4 C.2 D.8.抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是( )A. B. C. D.9.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A.甲、乙、丙 B.乙、甲、丙C.丙、乙、甲 D.甲、丙、乙10.不等式的解集记为,有下面四个命题:;;;.其中的真命题是( )A. B. C. D.11.在中,角、、的对边分别为、、,若,,,则( )A. B. C. D.12.正方体,是棱的中点,在任意两个中点的连线中,与平面平行的直线有几条( )A.36 B.21 C.12 D.6二、填空题:本题共4小题,每小题5分,共20分。

      13.设等差数列的前项和为,若,,则______,的最大值是______.14.若双曲线的两条渐近线斜率分别为,,若,则该双曲线的离心率为________.15.记数列的前项和为,已知,且.若,则实数的取值范围为________.16.在平面直角坐标系中,若双曲线经过点(3,4),则该双曲线的准线方程为_____.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)在平面直角坐标系xOy中,椭圆C:的右准线方程为x=2,且两焦点与短轴的一个顶点构成等腰直角三角形.(1)求椭圆C的方程;(2)假设直线l:与椭圆C交于A,B两点.①若A为椭圆的上顶点,M为线段AB中点,连接OM并延长交椭圆C于N,并且,求OB的长;②若原点O到直线l的距离为1,并且,当时,求△OAB的面积S的范围.18.(12分)如图,在三棱柱中,已知四边形为矩形,,,,的角平分线交于.(1)求证:平面平面;(2)求二面角的余弦值.19.(12分)在三角形中,角,,的对边分别为,,,若.(Ⅰ)求角;(Ⅱ)若,,求.20.(12分)已知等差数列{an}的各项均为正数,Sn为等差数列{an}的前n项和,.(1)求数列{an}的通项an;(2)设bn=an⋅3n,求数列{bn}的前n项和Tn.21.(12分)在极坐标系中,已知曲线,.(1)求曲线、的直角坐标方程,并判断两曲线的形状;(2)若曲线、交于、两点,求两交点间的距离.22.(10分)如图,在四棱锥中,底面是边长为2的菱形,,平面平面,点为棱的中点.(Ⅰ)在棱上是否存在一点,使得平面,并说明理由;(Ⅱ)当二面角的余弦值为时,求直线与平面所成的角.参考答案一、选择题:本题共12小题,每小题5分,共60分。

      在每小题给出的四个选项中,只有一项是符合题目要求的1.B【解题分析】化简得lgcosA=lg=﹣lg2,即,结合, 可求,得代入sinC=sinB,从而可求C,B,进而可判断.【题目详解】由,可得lgcosA==﹣lg2,∴,∵,∴,,∴sinC=sinB==,∴tanC=,C=,B=.故选:B【题目点拨】本题主要考查了对数的运算性质的应用,两角差的正弦公式的应用,解题的关键是灵活利用基本公式,属于基础题.2.D【解题分析】由条件利用余弦函数的图象的对称性,得出结论.【题目详解】对于函数,令,解得,当时,函数的对称轴为,,.故选:D.【题目点拨】本题主要考查余弦函数的图象的对称性,属于基础题.3.A【解题分析】结合向量垂直的坐标表示,将两个条件相互推导,根据能否推导的情况判断出充分、必要条件.【题目详解】由,则,所以;而当,则,解得或.所以“”是“”的充分不必要条件.故选:A【题目点拨】本小题考查平面向量的运算,向量垂直,充要条件等基础知识;考查运算求解能力,推理论证能力,应用意识.4.D【解题分析】解一元二次不等式化简集合,再由集合的交集运算可得选项.【题目详解】因为集合,故选:D.【题目点拨】本题考查集合的交集运算,属于基础题.5.B【解题分析】由,则输出为300,即可得出判断框的答案【题目详解】由,则输出的值为300,,故判断框中应填?故选:.【题目点拨】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.6.C【解题分析】根据等比数列的性质以及充分条件和必要条件的定义进行判断即可.【题目详解】解:若{an}是等比数列,则,若,则,即成立,若成立,则,即,故“”是“”的充要条件,故选:C.【题目点拨】本题主要考查充分条件和必要条件的判断,利用等比数列的通项公式是解决本题的关键.7.D【解题分析】由复数的综合运算求出,再写出其共轭复数,然后由模的定义计算模.【题目详解】,.故选:D.【题目点拨】本题考查复数的运算,考查共轭复数与模的定义,属于基础题.8.A【解题分析】首先求出样本空间样本点为个,再利用分类计数原理求出三个正面向上为连续的3个“1”的样本点个数,再求出重复数量,可得事件的样本点数,根据古典概型的概率计算公式即可求解.【题目详解】样本空间样本点为个, 具体分析如下:记正面向上为1,反面向上为0,三个正面向上为连续的3个“1”,有以下3种位置1__ __,__1__,__ __1.剩下2个空位可是0或1,这三种排列的所有可能分别都是,但合并计算时会有重复,重复数量为,事件的样本点数为:个.故不同的样本点数为8个,.故选:A【题目点拨】本题考查了分类计数原理与分步计数原理,古典概型的概率计算公式,属于基础题9.A【解题分析】利用逐一验证的方法进行求解.【题目详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A.【题目点拨】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.10.A【解题分析】作出不等式组表示的可行域,然后对四个选项一一分析可得结果.【题目详解】作出可行域如图所示,当时,,即的取值范围为,所以为真命题;为真命题;为假命题.故选:A【题目点拨】此题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于中档题.11.B【解题分析】利用两角差的正弦公式和边角互化思想可求得,可得出,然后利用余弦定理求出的值,最后利用正弦定理可求出的值.【题目详解】,即,即,,,得,,.由余弦定理得,由正弦定理,因此,.故选:B.【题目点拨】本题考查三角形中角的正弦值的计算,考查两角差的正弦公式、边角互化思想、余弦定理与正弦定理的应用,考查运算求解能力,属于中等题.12.B【解题分析】先找到与平面平行的平面,利用面面平行的定义即可得到.【题目详解】考虑与平面平行的平面,平面,平面,共有,故选:B.【题目点拨】本题考查线面平行的判定定理以及面面平行的定义,涉及到了简单的组合问题,是一中档题.二、填空题:本题共4小题,每小题5分,共20分。

      13. 【解题分析】利用等差数列前项和公式,列出方程组,求出首项和公差的值,利用等差数列的通项公式可求出数列的通项公式,可求出的表达式,然后利用双勾函数的单调性可求出的最大值.【题目详解】(1)设等差数列的公差为,则,解得,所以,数列的通项公式为;(2),,令,则且,,由双勾函数的单调性可知,函数在时单调递减,在时单调递增,当或时,取得最大值为.故答案为:;.【题目点拨】本题考查等差数列的通项公式、前项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是中档题.14.2【解题分析】由题得,再根据求解即可.【题目详解】双曲线的两条渐近线为,可令,,则,所以,解得.故答案为:2.【题目点拨】本题考查双曲线渐近线求离心率的问题.属于基础题.15.【解题分析】根据递推公式,以及之间的关系,即可容易求得,再根据数列的单调性,求得其最大值,则参数的范围可求.【题目详解】当时,,解得.所以.因为,则,两式相减,可得,即,则.两式相减,可得.所以数列是首项为3,公差为2的等差数列,所以,则.令,则.当时,,数列单调递减,而,,,故,即实数的取值范围为.故答案为:.【题目点拨】本题考查由递推公式求数列的通项公式,涉及数列单调性的判断,属综合困难题.16.【解题分析】代入求解得,再求准线方程即可.【题目详解】解:双曲线经过点,,解得,即.又,故该双曲线的准线方程为: .故答案为:.【题目点拨】本题主要考查了双曲线的准线方程求解,属于基础题.三、解答题:共70分。

      解答应写出文字说明、证明过程或演算步骤17.(1);(2)①;②.【解题分析】(1)根据椭圆的几何性质可得到a2,b2;(2)联立直线和椭圆,利用弦长公式可求得弦长AB,利用点到直线的距离公式求得原点到直线l的距离,从而可求得三角形面积,再用单调性求最值可得值域.【题目详解】(1)因为两焦点与短轴的一个顶点的连线构成等腰直角三角形,所以,又由右准线方程为,得到,解得,所以 所以,椭圆的方程为 (2)①设,而,则,∵ , ∴ 因为点都在椭圆上,所以,将下式两边同时。

      点击阅读更多内容
      猜您喜欢
      2024届湖北省恩施州高中教育联盟第二学期5月质检考试高三数学试题.doc 2024届湖北省恩施高中高三信息化试点班入学测试数学试题试卷.doc 山东省2024届高三下期中考数学试题.doc 2024届广西百色市第五高考测评活动高三元月调考数学试题.doc 2024届福建省东山二中高三下学期3月月考数学试题试卷.doc 2024届广东省中山一中、潮阳一中等中学高三下第一次统练数学试题.doc 2024届河北省永年县第二中学普通高中毕业班5月质量检查数学试题.doc 2024届安徽省临泉县复读学校高三全真数学试题模拟试卷(5).doc 2024届福建省漳州八校高三高考冲刺模拟考试(一)数学试题.doc 2024届天津市英华中学高三下学期入学摸底测试数学试题.doc 安徽省芜湖市普通高中2024届高三下学期第一次月考试题数学试题试卷.doc 2024届辽宁省辽源市鼎高级中学高三下学期高考(5月模拟)数学试题试卷.doc 2024届嘉峪关市重点中学高三(5月)模拟数学试题.doc 2024届四川省泸州市泸县二中高三(最后冲刺)数学试题试卷.doc 2024届全国百校名师联盟高三数学试题二模试卷含解析.doc 2024届江苏省苏北老四所县中高考数学试题:考前冲刺打靶卷.doc 2024届重庆铜梁县第一中学高三第二次调查研究数学试题.doc 云南省沾益县一中2024届高三下学期期末教学质量检测试题数学试题理试题.doc 2024届江西省鹰潭市高三下综合测试(数学试题理)试题.doc 2024届江苏省无锡市达标名校高三校内模拟考试自选模块试卷.doc
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.