
安徽省芜湖市普通高中2024届高三下学期第一次月考试题数学试题试卷.doc
21页安徽省芜湖市普通高中2024届高三下学期第一次月考试题数学试题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号回答非选择题时,将答案写在答题卡上,写在本试卷上无效3.考试结束后,将本试卷和答题卡一并交回一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.已知,,,则( )A. B.C. D.2.执行如图所示的程序框图,若输出的,则输入的整数的最大值为( )A.7 B.15 C.31 D.633. “十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A. B.C. D.4.在直三棱柱中,己知,,,则异面直线与所成的角为( )A. B. C. D.5.双曲线的渐近线方程是( )A. B. C. D.6.已知复数z满足,则z的虚部为( )A. B.i C.–1 D.17.若复数在复平面内对应的点在第二象限,则实数的取值范围是( )A. B. C. D.8.函数的定义域为( )A.[,3)∪(3,+∞) B.(-∞,3)∪(3,+∞)C.[,+∞) D.(3,+∞)9.执行如图所示的程序框图,输出的结果为( )A. B.4 C. D.10.设函数的导函数,且满足,若在中,,则( )A. B. C. D.11.中国古代数学著作《算法统宗》中有这样一个问题;“三百七十八里关,初行健步不为难,次后脚痛递减半,六朝才得到其关,要见每朝行里数,请公仔细算相还.”其意思为:“有一个人走了378里路,第一天健步走行,从第二天起脚痛每天走的路程是前一天的一半,走了6天后到达目的地,求该人每天走的路程.”由这个描述请算出这人第四天走的路程为( )A.6里 B.12里 C.24里 D.48里12.如图,正方体的棱长为1,动点段上,、分别是、的中点,则下列结论中错误的是( )A., B.存在点,使得平面平面C.平面 D.三棱锥的体积为定值二、填空题:本题共4小题,每小题5分,共20分。
13.如图,棱长为2的正方体中,点分别为棱的中点,以为圆心,1为半径,分别在面和面内作弧和,并将两弧各五等分,分点依次为、、、、、以及、、、、、.一只蚂蚁欲从点出发,沿正方体的表面爬行至,则其爬行的最短距离为________.参考数据:;;)14.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为__________.15.某四棱锥的三视图如图所示,那么此四棱锥的体积为______.16.点到直线的距离为________三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)已知函数.(1)求不等式的解集;(2)设的最小值为,正数,满足,证明:.18.(12分)已知 (1)当时,判断函数的极值点的个数;(2)记,若存在实数,使直线与函数的图象交于不同的两点,求证:.19.(12分)若关于的方程的两根都大于2,求实数的取值范围.20.(12分)如图,在四棱锥中,四边形是直角梯形, 底面 ,是的中点.(1).求证:平面平面;(2).若二面角的余弦值为,求直线与平面所成角的正弦值.21.(12分)如图,三棱柱中,侧面为菱形,.(1)求证:平面;(2)若,求二面角的余弦值.22.(10分)已知函数(1)当时,证明,在恒成立;(2)若在处取得极大值,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1.C【解题分析】利用二倍角公式,和同角三角函数的商数关系式,化简可得,即可求得结果.【题目详解】,所以,即.故选:C.【题目点拨】本题考查三角恒等变换中二倍角公式的应用和弦化切化简三角函数,难度较易.2.B【解题分析】试题分析:由程序框图可知:①,;②,;③,;④,;⑤,. 第⑤步后输出,此时,则的最大值为15,故选B.考点:程序框图.3.D【解题分析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列. 等比数列的判断方法主要有如下两种:(1)定义法,若()或(), 数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.4.C【解题分析】由条件可看出,则为异面直线与所成的角,可证得三角形中,,解得从而得出异面直线与所成的角.【题目详解】连接,,如图:又,则为异面直线与所成的角.因为且三棱柱为直三棱柱,∴∴面,∴,又,,∴,∴,解得.故选C【题目点拨】考查直三棱柱的定义,线面垂直的性质,考查了异面直线所成角的概念及求法,考查了逻辑推理能力,属于基础题.5.C【解题分析】根据双曲线的标准方程即可得出该双曲线的渐近线方程.【题目详解】由题意可知,双曲线的渐近线方程是.故选:C.【题目点拨】本题考查双曲线的渐近线方程的求法,是基础题,解题时要认真审题,注意双曲线的简单性质的合理运用.6.C【解题分析】利用复数的四则运算可得,即可得答案.【题目详解】∵,∴,∴,∴复数的虚部为.故选:C.【题目点拨】本题考查复数的四则运算、虚部概念,考查运算求解能力,属于基础题.7.B【解题分析】复数,在复平面内对应的点在第二象限,可得关于a的不等式组,解得a的范围.【题目详解】,由其在复平面对应的点在第二象限,得,则.故选:B.【题目点拨】本题考查了复数的运算法则、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题.8.A【解题分析】根据幂函数的定义域与分母不为零列不等式组求解即可.【题目详解】因为函数,解得且;函数的定义域为, 故选A.【题目点拨】定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数的定义域为,则函数的定义域由不等式求出.9.A【解题分析】模拟执行程序框图,依次写出每次循环得到的的值,当,,退出循环,输出结果.【题目详解】程序运行过程如下:,;,;,;,;,;,;,,退出循环,输出结果为,故选:A.【题目点拨】该题考查的是有关程序框图的问题,涉及到的知识点有判断程序框图输出结果,属于基础题目.10.D【解题分析】根据的结构形式,设,求导,则,在上是增函数,再根据在中,,得到,,利用余弦函数的单调性,得到,再利用的单调性求解.【题目详解】设,所以 ,因为当时,,即,所以,在上是增函数,在中,因为,所以,,因为,且,所以,即,所以,即故选:D【题目点拨】本题主要考查导数与函数的单调性,还考查了运算求解的能力,属于中档题.11.C【解题分析】设第一天走里,则是以为首项,以为公比的等比数列,由题意得,求出(里,由此能求出该人第四天走的路程.【题目详解】设第一天走里,则是以为首项,以为公比的等比数列,由题意得:,解得(里,(里.故选:C.【题目点拨】本题考查等比数列的某一项的求法,考查等比数列等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.12.B【解题分析】根据平行的传递性判断A;根据面面平行的定义判断B;根据线面垂直的判定定理判断C;由三棱锥以三角形为底,则高和底面积都为定值,判断D.【题目详解】在A中,因为分别是中点,所以,故A正确;在B中,由于直线与平面有交点,所以不存在点,使得平面平面,故B错误;在C中,由平面几何得,根据线面垂直的性质得出,结合线面垂直的判定定理得出平面,故C正确;在D中,三棱锥以三角形为底,则高和底面积都为定值,即三棱锥的体积为定值,故D正确;故选:B【题目点拨】本题主要考查了判断面面平行,线面垂直等,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。
13.【解题分析】根据空间位置关系,将平面旋转后使得各点在同一平面内,结合角的关系即可求得两点间距离的三角函数表达式.根据所给参考数据即可得解.【题目详解】棱长为2的正方体中,点分别为棱的中点,以为圆心,1为半径,分别在面和面内作弧和.将平面绕旋转至与平面共面的位置,如下图所示:则,所以;将平面绕旋转至与平面共面的位置,将绕旋转至与平面共面的位置,如下图所示:则,所以;因为,且由诱导公式可得,所以最短距离为,故答案为:.【题目点拨】本题考查了空间几何体中最短距离的求法,注意将空间几何体展开至同一平面内求解的方法,三角函数诱导公式的应用,综合性强,属于难题.14..【解题分析】分析:由题意结合古典概型计算公式即可求得题中的概率值.详解:由题意可知了,比赛可能的方法有种,其中田忌可获胜的比赛方法有三种:田忌的中等马对齐王的下等马,田忌的上等马对齐王的下等马,田忌的上等马对齐王的中等马,结合古典概型公式可得,田忌的马获胜的概率为.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.15.【解题分析】利用三视图判断几何体的形状,然后通过三视图的数据求解几何体的体积.【题目详解】如图:此四棱锥的高为,底面是长为,宽为2的矩形,所以体积.所以本题答案为.【题目点拨】本题考查几何体与三视图的对应关系,几何体体积的求法,考查空间想象能力与计算能力.解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断.16.2【解题分析】直接根据点到直线的距离公式即可求出。
题目详解】依据点到直线的距离公式,点到直线的距离为题目点拨】本题主要考查点到直线的距离公式的应用三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(1)(2)证明见解析【解题分析】(1)将表示为分段函数的形式,由此求得不等式的解集.(2)利用绝对值三角不等式求得的最小值,利用分析法,结合基本不等式,证得不等式成立.【题目详解】(1),不等式,即或或,即有或或,所以所求不等式的解集为.(2),,因为,,所以要证,只需证,即证,因为,所以只。












