
特征根法求数列的第推公式.doc
3页专题求递推数列通项的特征根法一、形如an .2 =pan 1 • qan(p,q是常数)的数列形如耳=m, a? = m2, a“ = pa.卡+ qa.( p, q是常数)的二阶递推数列都可用特征根 法求得通项an,其特征方程为x2 = px • q…①若①有二异根,则可令an =cp n • c?] n(G,C2是待定常数)若①有二重根:=■,则可令an =(g - nC2^ n(Ci,C2是待定常数)再利用 & =皿82二讥,可求得 g,Q,进而求得 3例1已知数列{an}满足印=2,a2 =3,an .2 =3an 4 -2an(N*),求数列{an}的通项a解:其特征方程为x = 3x —2,解得X| = 1,X2 = 2,令an = G 1 • c2・2“,n』an = 1 2由 & y 2c^2,得 & _1J a^ — C1 4c2 — 3 JC2 — ~,令 an" nc2 f,3n-2an - 2*J例2已知数列{an}满足a =1,a2 =2,4an .2 =4an q -an(n • N*),求数列{an}的通项a解:其特征方程为4x2 =4x-1,解得& =X21a^ — (g q) 1由; ( ) 2 ,得严一卜2 =(G +2C2)工 1 =2 9 _6、形如an .1二Aan B的数列Can +DAa + B *对于数列 an" n B,a^m,n,N (A,B,C,D是常数且 C = O,AD-BC = O)Can +D其特征方程为X二Ax B,变形为Cx2 • (D - A)x - B = 0…②Cx + D若②有二异根\ ,则可令二c (其中c是待定常数),代入a1,a2的an4r —P an—P值可求得C值这样数列是首项为 ,公比为c的等比数列,于是这样可求得an若②有二重根:一 1 ,则可令 一1 — c(其中c是待定常数),代入a,,a2an^ _G an _a的值可求得c值。
这样数列是首项为,公差为c的等差数列,于是这样可求得an lan -J an —a例3已知数列{an}满足2,an = a」2(^ 2),求数列厶}的通项务2an/1解:其特征方程为x=朋,化简得 2x2 -2 = 0 ,解得 N =1,x2 = -1,令 an 1 一1an - 1an 1 ■ 1=c -an 14 1由a1 = 2,得a2 ,可得c =5 3fa _1 1 .数列是以© +1 J为首项,1为公比的等比数列…討nJ-an3n -(-1)n3n - (-1)n例4已知数列{an}满足a =2,an 1二空匚n • N*),求数列{务}的通项K4务十6解:其特征方程为2x -1“右,即4x +4汀仁0,解得X1an 13由6=2,得a2 ,求得c = 1,141_ 215a「-2数列'1 ,是以为首项,以1为公差的等差数列,2 3(n - 1 ) =1n ,an5 513「5n10n —6。
