
半导体物理实验讲义.doc
118页实验一 硅的霍耳系数和电导率测量一、目的掌握测量霍耳系数和电导率的实验方法,测出硅的霍耳系数和电导率随温度变化的数据,确定硅的导电类型二、基本原理一块宽为a、厚为b的长方形半导体(见图1)若在x方向上有均匀的电流IX流过,再Z方向上加均匀磁场Bz,那么在这块半导体A、B两点间(即Y方向上)产生一电位差,这种现象称为霍耳效应从实验中发现,在弱磁场情况下,霍耳电场Ey的大小与电流密度JX和磁场强度Bz成正比,即Ey=RJXBz由上式可得 R=Ey / JXBz (1)R称为霍耳系数在实验上直接测量的是霍耳电位差VH因为, Ey=VH / aJX=IX / ab (1)式可以写为 R=VH b / IXBz (2)如果(2)式中各量所用的单位是VH-伏;IX-安培;Bz-高斯;b-厘米;R-厘米3/库仑,则应该在(2)式中引入单位变换因子108,把它写成如下形式: R=( VH b /IXBz ) * 108 (3)上式为实验中实际应用的公式。
因为电子和空穴的漂移运动是相反的,但是电荷符号也是相反的,磁场对它们的偏转作用力方向相同结果在边界上积累的电荷两种情况下相反,因此霍耳电场和电势差是相反的照这个道理可以区别电子性导电(n型)和空穴导电(P型)当EY>0,为p型,EY<0,为n型在霍耳效应的简单理论中,对电子和空穴混合导电的半导体,霍耳系数为: R=( pμp2-nμn2 )/﹝( pμp+nμn )2 e﹞ (4)对n型半导体可简化为: R=﹣1 / ne (5)对p型半导体可简化为: R= 1 / pe (6)(4)、(5)、(6) 各式中,n和p分别表示电子和空穴浓度,μp 和μn 分别为电子和空穴的迁移率图2给出两个硅样品霍耳系数随着温度变化的实验曲线样品1是n型的,样品2是p型的在图2中,样品1的曲线AB部分差不多是一水平线,在这一段温度范围,施主能级上的电子几乎全部跃迁到导带中去了,而本征激发是可以忽略的,因而表现出温度升高导带中电子密度不变。
这就是所谓的饱和电离区根据公式,在饱和区的霍耳系数RH为一常数,并且在无补偿的情况下,可以得出施主密度:ND=1 / e|RH| (7)同理,p型样品的受主密度 NA=1 / e RH (8)图2的CD部分:当温度升高时霍耳系数迅速减小这是由于温度已经足够高了,能使电子直接由满带跃迁到导带的本征激发成为主要的从而使电子浓度和空穴浓度相等,并随温度升高迅速增大这说明不管杂质的种类和密度是怎样的,由R-1/T知道在本征导电时都有相同的激发能Eg/2此时硅的性质决定于本征禁带宽度,导带和满带的有效状态密度,与外加杂质的种类和密度无关,所以叫本征导电 样品2是p型的,p型样品的曲线包含两支,右面(低温区)的一支霍耳系数是正的,而左面的一支霍耳系数是负的,图中表示的是绝对值P型半导体霍尔系数一个明显特点是,在温度从杂质电离范围过渡到本征导电范围时,霍尔系数将改变符号这是因为电子迁移率大于空穴迁移率的原因而引起的 可以证明,在本征时:ni=n=p=KT3/2 exp(﹣Eg /2KT) (9)上式中Eg为禁带宽度,K是与T无关的常数。
在本征导电时,硅样品中晶格散射起主要作用,迁移率和温度的关系: μ ~ T﹣3/2 (10)把(9)和(10)两式代入(4)中可得: R=AT﹣3/2 exp(Eg /2KT) (11)由于上式中R与T的关系主要是由指数项决定,所以它又可以近似地写为: R=Bexp(Eg /2KT) (12)这里A与B均为与T无关的常数根据(12)式,在本征导电范围,我们可以从lnR-1/T曲线的斜率来求禁带宽度Eg电导率与温度的关系: 图(1)中AC为测量电导的一对电极,AC之间的距离为1;横截面积ab=s当有均匀的电流沿x方向流过样品时,测得AC之间电位差VAC,则电导率为: σ= IX l / VAC ab (13)(13)式中各量常用单位是:IX一安培,VAC-伏特,a、b、l一厘米,σ-(欧姆•厘米)﹣1。
图3表示n型硅样品电导率随温度变化的曲线在饱和电离区,载流子密度不随温度改变但是在这个温度范围内,由于晶格散射起主要作用,迁移率随温度升高而减少,因此电导率随温度的升高是下降的当温度进入本征范围,由于电子和空穴密度随温度的上升而迅速增加因此电导率也随温度的增加而上升本征导电时 σ=e(pμp+nμn)=eni(μp+μn) (14)把(9)、(10)两式代入(14)中可得: σ=Cexp(﹣Eg /2KT) (15)其中C为与T无关的常数根据(15)式,在本征导电范围,也可以从lnσ-1/T曲线的斜率求出禁带宽度Eg在杂质电离区,则有 n型 σ=neμn (16) p型 σ=peμp (17)应该指出,在霍耳效应的统计理论中,霍耳系数的公式与简单理论给出的(4)、(5)(6)式不同,它们之间相差一个霍耳因子。
在杂质电离区,通常定义一个霍耳迁移率μH: n型 μH =| R|σ (18) p型 μH = Rσ (19)即电子或空穴的霍耳迁移率是由电导率和霍耳系数的实验值直接算出的迁移率,它们与对应的电导迁移率μn或μp也相差一个霍耳因子三、霍耳系数测量中副效应的消除1.电位降V0的消除:在硅的霍耳电位差测量中,通常影响最大的副效应是由于测量电极AB不在同一等位面上所造成的,如图4所示因为在这种情况下,即使在未加磁场之前,AB之间就有一电位降V0=IXR产生,其中R为AB所在两等位面间的电阻在测量霍耳电位差时,电位差V0会迭加上去由于硅的电阻率一般很高,所以V0和VH常常是同数量级,有时甚至V0大于VH的值V0的符号由电流的方向决定,与磁场的方向无关2.厄庭好森效应:样品在x方向的电流I和z方向的磁场B的作用下,在它的y方向产生温度差,这温度差TA—TB∝IB,这温度差将引起y方向的电位差,其数值用VE表示,VE与I和B成正比,VE的符号与I和B的方向有关。
3.里纪一勤杜克效应:样品在x方向有热流Q和z方向的磁场B的作用下,在它的y方向产生温度差,这温度差TA—TB∝QB,同理也可以产生电位差VRL∝QB,其符号与B的方向有关,和I的方向无关 4.能斯脱效应:样品在x方向的热流Q和z方向的磁场B的作用下,在它的y方向产生电位差,这电位差VN∝QB,VN的符号与B的方向有关,和I的方向无关我们在实验中可以改变I和B方向,使V0、VH和VRL从计算中消去,因此我们测量四组数据: 在样品中加﹢B﹢I时,在AB两端所得电位差 V1 = VH + VE + VRL + VN + V0在样品上加﹢B﹣I时,在AB两端所得电位差 V2 =﹣VH﹣VE + VRL + VN﹣V0在样品上加﹣B﹣I时,在AB端所得电位差 V3= VH + VE﹣VRL﹣VN﹣V0在样品上加﹣B﹢I时,在AB端所得电位差 V4 =﹣VH﹣VE﹣VRL﹣VN + V0由此可得 VH+VE=(V1﹣V2+V3﹣V4)/ 4 (20)实验时我们应该改变电流和磁场的方向,以测量电位差Vl、V2、V3和V4,然后按公式(20)求平均值,这样做免除了副效应的影响,但只有厄庭好森效应没有消除,由VE引入大约5%的误差。
一般采用交流测量可以避免VE的产生四、实验方法 1.线路和仪器设备:图5是本实验所用线路示意图待测样品安放在电磁铁中间当S1接通时,有电流通过样品,调节电阻箱的阻值大小,使电流为0.5毫安左右利用换向开关S2,可改变通过样品的电流方向当开关S3接通时,有磁场加于样品我们把交流电经过稳压 器和整流器变成稳定直流电,用它来激励电磁铁,一般能获得较稳定的磁场利用换向开关S4,可以改变磁场的方向调压变压器的作用是通过它调整硒整流器的输出电压,使激磁电流为实验所需要的数值 由前面的讨论可知,本实验所测量的量是电位差VAB和VAC,我们分别采用UJl型电位差计和数字电压表测量它们的数值 为了测量从室温到500K范围的霍耳系数和电导率,必须设计加热装置我们把样品固定在石棉板做的长条形样品架上,绕在石棉板上的电阻丝作为加热器,整个样品密封在保温瓶中当流过加热器的电流逐渐增加时,样品的温度缓慢地上升测量温度用铜一康铜热电偶,温差电动势VT用数字万用表进行测量2.样品电极的制备:测量样品的电极是要求做到欧姆接触的,这对测量的准确度影响极大为了满足测量的要求,我们先用掩蔽的方法把样品不需要的地方掩蔽起来,在样品的两端和A、B、C、D四点都电镀上金属镍,然后用钼制触压接触,样品两端用铜块压紧作为电流电极,这样可以满足测量要求。
五、具体要求1.熟悉测试线路和使用的仪器,先在室温下进行几次练习,然后逐渐增加通过加热器的电流,进行变温测量2.对于每一个确定的温度,要求在+I,+B和﹣。












