好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

受控核聚变.doc

5页
  • 卖家[上传人]:z****
  • 文档编号:258192686
  • 上传时间:2022-02-23
  • 文档格式:DOC
  • 文档大小:21.60KB
  • / 5 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 首先声明,尽管办公室在工程热物理所以及物理所在同一个园区里,我不是搞物理的,更不是搞核物理的,如果说一定要和搞一线核物理的研究所扯上关系,那么我参与的少量工作决定是不是给他们发钱    不是内行,加之行文仓促,这篇短文里面很可能包含不正确的内容,欢迎真正内行的网友指正核聚变首先,大家都知道,合肥的人造太阳的目的就是进行受控核聚变的研究,这个不多说了,先说说受控核聚变这件事情吧1939年,美国物理学家贝特通过实验证实,把一个氘原子核用加速器加速后和一个氚原子核以极高的速度碰撞,两个原子核发生了融合,形成一个新的原子核——氦外加一个自由中子,在这个过程中释放出了17.6兆电子伏的能量这就是太阳持续45亿年发光发热的原理早在1933年,核聚变的原理就被提出,而5年后,改变世界格局的核裂变才被发现核聚变反应堆的原理很简单,很好理解,只不过实现起来对于当时的人类技术水准,几乎是不可能的    第一步,作为反应体的混合气必须被加热到等离子态——也就是温度足够高到使得电子能脱离原子核的束缚,原子核能自由运动,这时才可能使得原子核发生直接接触,这个时候,需要大约10万摄氏度的温度    第二步,为了克服库伦力,也就是同样带正电子的原子核之间的斥力,原子核需要以极快的速度运行,得到这个速度,最简单的方法就是——继续加温,使得布朗运动达到一个疯狂的水平,要使原子核达到这种运行状态,需要上亿摄氏度的温度。

          然后就简单了,氚的原子核和氘的原子核以极大的速度,赤裸裸地发生碰撞,产生了新的氦核和新的中子,释放出巨大的能量经过一段时间,反应体已经不需要外来能源的加热,核聚变的温度足够使得原子核继续发生聚变这个过程只要氦原子核和中子被及时排除,新的氚和氘的混合气被输入到反应体,核聚变就能持续下去,产生的能量一小部分留在反应体内,维持链式反应,大部分可以输出,作为能源来使用    看起来很简单是吧,只有一个问题,你把这个高达上亿摄氏度的反应体放在哪里呢?迄今为止,人类还没有造出任何能经受1万摄氏度的化学结构,更不要说上亿摄氏度了这就是为什么一槌子买卖的氢弹已经制造了50年后,人类还没能有效的从核聚变中获取能量的唯一原因    好了,人类是很聪明的,不能用化学结构的方法解决问题,我们就用物理的试验一下早在50年前,两种约束高温反应体的理论就产生了,一种是惯性约束这一方法把几毫克的氘和氚的混合气体装入直径约几毫米的小球内,然后从外面均匀射入激光束或粒子束,球面内层因而向内挤压球内气体受到挤压,压力升高,温度也急剧升高,当温度达到需要的点火温度时,球内气体发生爆炸,产生大量热能这样的爆炸每秒钟发生三四次,并持续不断地进行下去,释放出的能量就可以达到百万千瓦级的水平。

      这一理论的奠基人之一就是我国著名科学家王淦昌    另一种就是磁力约束,由于原子核是带正电的,那么我的磁场只要足够强大,你就跑不出去,我建立一个环形的磁场,那么你就只能沿着磁力线的方向,沿着螺旋形运动,跑不出我的范围,而在环形磁场之外的一点距离,我可以建立一个大型的换热装置(此时反应体的能量只能以热辐射的方式传到换热体),然后再使用人类已经很熟悉的方法,把热能转换成电能就是了苏联科学家塔姆和萨哈罗夫提出的这种方法相对于惯性约束,目前世界受控核聚变研究,主要集中在这个领域上托卡马克    实现磁力约束,需要一个能产生足够强的环形磁场的装置,这种装置就被称作“托克马克装置”——TOKAMAK,也就是俄语中是由“环形”、“真空”、“磁”、“线圈”的字头组成的缩写早在1954年,在原苏联库尔恰托夫原子能研究所就建成了世界上第一个托卡马克装置    貌似很顺利吧?其实不然,要想能够投入实际使用,必须使得输入装置的能量远远小于输出的能量才行,我们称作能量增益因子——Q值当时的托卡马克装置是个很不稳定的东西,搞了十几年,也没有得到能量输出,直到1970年,前苏联才在改进了很多次的托卡马克装置上第一次获得了实际的能量输出,不过要用当时最高级设备才能测出来,Q值大约是10亿分之一。

          别小看这个十亿分之一,这使得全世界看到了希望,于是全世界都在这种激励下大干快上,纷纷建设起自己的大型托卡马克装置,欧洲建设了联合环-JET,苏联建设了T20(后来缩水成了T15,线圈小了,但是上了超导),日本的JT-60和美国的TFTR(托卡马克聚变实验反应器的缩写)    这些托卡马克装置一次次把能量增益因子(Q)值的纪录刷新,1991年欧洲的联合环实现了核聚变史上第一次氘-氚运行实验,使用6:1的氘氚混合燃料,受控核聚变反应持续了2秒钟,获得了0.17万千瓦输出功率,Q值达0.12    1993年,美国在TFTR上使用氘、氚1:1的燃料,两次实验释放的聚变能分别为0.3万千瓦和0.56万千瓦,Q值达到了0.28    1997年9月,联合欧洲环创1.29万千瓦的世界纪录,Q值达0.60,持续了2秒仅过了39天,输出功率又提高到1.61万千瓦, Q值达到0.65    三个月以后,日本的JT-60上成功进行了氘-氘反应实验,换算到氘-氚反应,Q值可以达到1后来,Q值又超过了1.25这是第一次Q值大于1,尽管氘-氘反应是不能实用的(这个后面再说),但是托卡马克理论上可以真正产生能量了。

          在这个大环境下,中国也不例外,在70年代就建设了数个实验托卡马克装置——环流一号(HL-1)和CT-6,后来又建设了HT-6,HT-6B,以及改建了HL1M,新建了环流2号有种说法,说中国的托卡马克装置研究是从俄罗斯赠送设备开始的,这是不对的,HT6/HL1的建设都早于俄罗斯赠送的HT-7系统HT-7以前,中国的几个设备都是普通的托卡马克装置,而俄罗斯赠送的HT-7则是中国第一个“超脱卡马克”装置    什么是“超脱卡马克装置”呢?回过头来说,托卡马克装置的核心就是磁场,要产生磁场就要用线圈,就要通电,有线圈就有导线,有导线就有电阻托卡马克装置越接近实用就要越强的磁场,就要给导线通过越大的电流,这个时候,导线里的电阻就出现了,电阻使得线圈的效率降低,同时限制通过大的电流,不能产生足够的磁场托卡马克貌似走到了尽头    幸好,超导技术的发展使得托卡马克峰回路转,只要把线圈做成超导体,理论上就可以解决大电流和损耗的问题,于是,使用超导线圈的托卡马克装置就诞生了,这就是超脱卡马克目前为止,世界上有4个国家有各自的大型超脱卡马克装置,法国的Tore-Supra,俄罗斯的T-15,日本的JT-60U,和中国的EAST。

      除了EAST以外,其他四个大概都只能叫“准超托卡马克”,它们的水平线圈是超导的,垂直线圈则是常规的,因此还是会受到电阻的困扰此外他们三个的线圈截面都是圆形的,而为了增加反应体的容积,EAST则第一次尝试做成了非原型截面此外,在建的还有德国的螺旋石-7,规模比EAST大,但是技术水平差不多混合燃料和燃料的来源    核聚变的消耗的燃料是世界上十分常见的东西——氘,也就是重氢新的问题出现了,仅仅有氘还是不够的,尽管氘-氘反应也是氢核聚变的主要形式,但我们人类现有条件下,根本无法控制氘-氘反应,它太猛烈了,所需要的温度要高得多,除了在实验室条件下一次性的实验外,很难让它链式反应下去——那是氢弹一样的威力还好,人们发现了氘-氚反应的烈度要小很多,它的反应速度仅仅是氘-氘反应的100分之一,而点火温度反倒低得多,很适合人类现有条件下的利用    一个问题接着一个问题,氚不同于氘,在地球上几乎没有,现在人类的氚都是人工制造而非天然提取的,人们通常是用重水反应堆在发电之余人工制造少量的氚——它是地球上最贵的东西之一,一克氚价值超过30万美元这么贵的原料,显然是无法接受的,幸好上帝给人类又提供了一种好东西——锂,锂的2种同位素在被中子轰击之后,就会裂变,他们的产物都是氚和氦,目前为止人类在重水堆中制造氚,用的就是将锂靶件植入反应堆的方法。

          回核聚变上,氚和氘反应后,除了形成一个氦原子核之外,还有一个多余的中子,并且能量很高好了,我们只需要在核聚变的反应体之内保持一定比例的锂原子核浓度,那么核聚变产生的中子就会轰击锂核,促使锂核裂变,产生一个新的氚,这个氚则继续参与氚-氘反应,继而产生新的中子,链式反应形成了所以,理论上我们只需要给反映体提供两种原料——氘和锂,就能实现氘-氚反应,并且维持它的进行    这两种原料还是比较容易取得的,氘在海水中的含量还是比较高的,我们只需要通过精馏法取得重水,然后再电解重水就能得到氘而锂的资源总量虽然不如氘多,但是更容易取得一些,一方面海水中就包含足够的氯化锂,分离出来即可另一方面,碳酸锂矿也不是稀有资源,更容易获得ITER    说到超脱卡马克,必须提到,2005年正式确定的国际合作项目ITER,也就是国际热核实验反应堆的缩写,这个项目从1985年开始,由苏联、美国、日本和欧共体提出,目的是建立第一个试验用的聚变反应堆注意,ITER已经不是托卡马克装置了,而是试验反应堆,这是一大进步最初方案是2010年建成一个实验堆,实现1500兆瓦功率输出,造价100亿美元    没想到因为各国想法不同,苏联解体,加上技术手段的限制,一直到了2000年也没有结果,其间美国干脆拍屁股走人——不干了,ITER陷入了胎死腹中的危险。

      直到2003年,能源危机加剧,各国又重视起来,首先是中国宣布加入了ITER计划,欧洲、日本和俄罗斯自然很高兴没几天美国也想:咱们不能落后啊,加上自己在这个领域没有优势,单干划不来,于是也宣布重返计划紧接着,有点银子又有点基础的韩国和印度也凑了进来,ITER红红火火,重张大吉    扯皮扯了20年以后,2005年ITER正式立项,地点在法国的卡达拉申,基本设计不变,力争2015年前全面完成,造价120亿美元,欧盟出40%,法、中、日、美各出10%,剩下的想让别人平摊,韩国印度不干,力争让俄国也出10%,自己出5%,不知道皮有没有扯完    ITER凑巧是拉丁语“道路”,可见大家对这个东西抱有多大的希望很有可能,她就是人类解决能源问题的“道路”如果ITER能成功,下一步就是利用ITER的技术,设计和建造示范商用堆,到那时,离真正的商业核聚变发电就不远了但是ITER建设中,还有大量的技术问题需要解决,需要有一个原型可以参考,在此基础上,各国的先进超脱卡马克装置就成了设计ITER的蓝本    ITER的研究远非一个托卡马克装置,它还有很多难题需要攻克,地雷战里说“各村有各村的高招”,日本的外围设备研究就远远走在了其他国家前面,他们在托卡马克点火领域就很先进,不用高压变压器,直接使用高频电流制造核聚变点火的高温等离子体电流,就已经在日本试验成功了,大功率激光点火也接近完善。

      EAST    EAST是目前为止,超托卡马克反应体部分,唯一能给ITER提供实验数据的装置,他的结构和应用的技术与规划中的ITER完全一样,没有的仅仅是换能部分EAST解决了几个重要问题:    第一次采用了非圆型垂直截面,目的是在不增加环形直径的前提下增加反应体的体积,提高磁场效率    第一次全部采用了液氦无损耗的超导体系液氦是很贵的,只有圈材料上下功夫,尽量少用液氦,同时让液氦可以循环使用,尽量减少损耗的系统才可能投入实用    此外,EAST还是世界上第一个具有主动冷却结构的托卡马克,它的第一壁是主动冷却的,目前连接的是一个大型冷却塔,它的冷却水可以保证在长时间运行后将反应产生的热量带走,维持系统的温度平衡,一方面是为真正实现稳定的受控聚变迈出的重要一步,另一方面也是工程化的重要标志——冷却塔换成汽轮机是可以发电的    结合一些相关资料,目前世界这个领域普遍认为EAST将是第一个能长时间稳定运行的,Q值能。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.