
2024学年浙江省杭州市拱墅区数学九年级第一学期期末调研试题含解析.doc
19页2024学年九年级上学期数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上用2B铅笔将试卷类型(B)填涂在答题卡相应位置上将条形码粘贴在答题卡右上角"条形码粘贴处"2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案答案不能答在试题卷上3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液不按以上要求作答无效4.考生必须保证答题卡的整洁考试结束后,请将本试卷和答题卡一并交回一、选择题(每题4分,共48分)1.如图,随意向水平放置的大⊙O内部区域抛一个小球,则小球落在小⊙O内部(阴影)区域的概率为( )A. B. C. D.2.不等式组的解集是( )A. B. C. D.3.已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是( )A.m+n<0 B.m+n>0 C.m<n D.m>n4.若3a=5b,则a:b=( )A.6:5 B.5:3 C.5:8 D.8:55.如果一个正多边形的中心角为60°,那么这个正多边形的边数是( )A.4 B.5 C.6 D.76.已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=在同一坐标系中的图象的形状大致是( ) A. B.C. D.7.下列多边形一定相似的是( )A.两个平行四边形 B.两个矩形C.两个菱形 D.两个正方形8.下列图形中,既是轴对称图形又是中心对称图形的共有( )A.1个 B.2个 C.3个 D.4个9.如图,AB是半圆O的直径,半径OC⊥AB于O,AD平分∠CAB交于点D,连接CD,OD,BD.下列结论中正确的是( )A.AC∥OD B.C.△ODE∽△ADO D.10.小马虎在计算16-x时,不慎将“-”看成了“+”,计算的结果是17,那么正确的计算结果应该是( )A.15 B.13 C.7 D.11.下列四个数中,最小数的是( )A.0 B.﹣1 C. D.12.方程的根是( )A.2 B.0 C.0或2 D.0或3二、填空题(每题4分,共24分)13.若二次函数的图象开口向下,则_____0(填“=”或“>”或“<”).14.若弧长为4π的扇形的圆心角为直角,则该扇形的半径为 .15.等腰△ABC的腰长与底边长分别是方程x2﹣6x+8=0的两个根,则这个△ABC的周长是_____.16.当a=____时,关于x的方程式为一元二次方程17.如图,与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧所对的圆心角的大小为_____度.18.把多项式分解因式的结果是__________.三、解答题(共78分)19.(8分)如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD=AC, 联结BD、CD,BD交直线AC于点E.(1)当∠CAD=90°时,求线段AE的长. (2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,①当∠CAD<120°时,设,(其中表示△BCE的面积,表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围; ②当时,请直接写出线段AE的长.20.(8分)某广场有一个小型喷泉,水流从垂直于地面的水管OA喷出,OA长为1.5米.水流在各个方向上沿形状相同的抛物线路径落到地面上,某方向上抛物线路径的形状如图所示,落点B到O的距离为3米.建立平面直角坐标系,水流喷出的高度y(米)与水平距离x(米)之间近似满足函数关系(1)求y与x之间的函数关系式;(2)求水流喷出的最大高度.21.(8分)如图,∠1=∠3,∠B=∠D,AB=DE=5,BC=1.(1)请证明△ABC∽△ADE.(2)求AD的长.22.(10分)如图所示,双曲线与直线(为常数)交于,两点.(1)求双曲线的表达式;(2)根据图象观察,当时,求的取值范围;(3)求的面积.23.(10分)如图,在平面直角坐标系中,的三个顶点的坐标分别为点、、.(1)的外接圆圆心的坐标为 .(2)①以点为位似中心,在网格区域内画出,使得与位似,且点与点对应,位似比为2:1,②点坐标为 .(3)的面积为 个平方单位.24.(10分)计算:25.(12分)如图,点B,E,C,F 在一条直线上,AB=DE,AC=DF,BE=CF,求证:∠A=∠D.26.已知关于x的方程(a﹣1)x2+2x+a﹣1=1.(1)若该方程有一根为2,求a的值及方程的另一根;(2)当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根.参考答案一、选择题(每题4分,共48分)1、B【分析】针扎到内切圆区域的概率就是内切圆的面积与外切圆面积的比.【详解】解:∵如图所示的正三角形,∴∠CAB=60°,∴∠OAB=30°,∠OBA=90°,设OB=a,则OA=2a,则小球落在小⊙O内部(阴影)区域的概率为.故选:B.【点睛】本题考查了概率问题,掌握圆的面积公式是解题的关键.2、D【分析】根据不等式的性质解不等式组即可.【详解】解:化简可得: 因此可得 故选D.【点睛】本题主要考查不等式组的解,这是中考的必考点,应当熟练掌握.3、D【解析】根据反比例函数的性质,可得答案.【详解】∵y=−的k=-2<1,图象位于二四象限,a<1,∴P(a,m)在第二象限,∴m>1;∵b>1,∴Q(b,n)在第四象限,∴n<1.∴n<1<m,即m>n,故D正确;故选D.【点睛】本题考查了反比例函数的性质,利用反比例函数的性质:k<1时,图象位于二四象限是解题关键.4、B【解析】由比例的基本性质,即两内项之积等于两外项之积即可得出结果.【详解】解:∵3a=5b,∴=,故选:B.【点睛】此题主要考查比例的性质,解题的关键是熟知两内项之积等于两外项之积.5、C【解析】试题解析:这个多边形的边数为: 故选C.6、C【解析】试题分析:如图所示,由一次函数y=kx+b的图象经过第一、三、四象限,可得k>1,b<1.因此可知正比例函数y=kx的图象经过第一、三象限,反比例函数y=的图象经过第二、四象限.综上所述,符合条件的图象是C选项.故选C.考点:1、反比例函数的图象;2、一次函数的图象;3、一次函数图象与系数的关系7、D【分析】利用相似多边形的定义:对应边成比例,对应角相等的两个多边形相似,逐一分析各选项可得答案.【详解】解:两个平行四边形,既不满足对应边成比例,也不满足对应角相等,所以A错误,两个矩形,满足对应角相等,但不满足对应边成比例,所以B错误,两个菱形,满足对应边成比例,但不满足对应角相等,所以C错误,两个正方形,既满足对应边成比例,也满足对应角相等,所以D正确,故选D.【点睛】本题考查的是相似多边形的定义与判定,掌握定义法判定多边形相似是解题的关键.8、B【分析】根据中心对称图形和轴对称图形的概念即可得出答案.【详解】根据中心对称图形和轴对称图形的概念,可以判定既是中心对称图形又是轴对称图形的有第3第4个共2个.故选B.考点:1.中心对称图形;2.轴对称图形.9、A【分析】A.根据等腰三角形的性质和角平分线的性质,利用等量代换求证∠CAD=∠ADO即可;B.过点E作EF⊥AC,根据角平分线上的点到角的两边的距离相等可得OE=EF,再根据直角三角形斜边大于直角边可证;C.两三角形中,只有一个公共角的度数相等,其它两角不相等,所以不能证明③△ODE∽△ADO;D.根据角平分线的性质得出∠CAD=∠BAD,根据在同圆或等圆中,相等的圆周角所对的弦相等,可得CD=BD,又因为CD+BD>BC,又由AC=BC可得AC<2CD,从而可判断D错误.【详解】解:解:A.∵AB是半圆直径,∴AO=OD,∴∠OAD=∠ADO,∵AD平分∠CAB交弧BC于点D,∴∠CAD=∠DAO= ∠CAB,∴∠CAD=∠ADO,∴AC∥OD, ∴A正确.B.如图,过点E作EF⊥AC,∵OC⊥AB,AD平分∠CAB交弧BC于点D,∴OE=EF,在Rt△EFC中,CE>EF,∴CE>OE,∴B错误.C.∵在△ODE和△ADO中,只有∠ADO=∠EDO,∵∠COD=2∠CAD=2∠OAD,∴∠DOE≠∠DAO,∴不能证明△ODE和△ADO相似,∴C错误;D.∵AD平分∠CAB交于点D,∴∠CAD=∠BAD.∴CD=BD∴BC
