好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

推荐)全国大学生数学竞赛.doc

12页
  • 卖家[上传人]:日度
  • 文档编号:168993354
  • 上传时间:2021-02-22
  • 文档格式:DOC
  • 文档大小:101KB
  • / 12 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 关于举办第三届全国大学生数学竞赛的通知各省、市、自治区数学会、解放军院校协作中心数学联席会:为了培养人才、服务教学、促进高等学校数学课程的改革和建设,增加大学生学习数学的兴趣,培养分析、解决问题的能力,发现和选拔数学创新人才,为青年学子提供一个展示基础知识和思维能力的舞台,经中国数学会批准,第三届全国大学生数学竞赛由上海同济大学承办经全国大学生数学竞赛委员会研究确定,本届比赛分区预赛在2011年10月29日(星期六)上午9:00—11:30举行,决赛于2012年3月份的第三周周六上午在同济大学举行现将竞赛的具体事宜通知如下:(1) 参赛对象: 大学本科二年级或二年级以上的在校大学生竞赛分为非数学专业组和数学专业组(含数学与应用数学、信息与计算科学专业的学生)数学专业学生不得参加非数学专业组的竞赛2) 竞赛内容: 非数学专业组竞赛内容为本科高等数学内容(高等数学内容为理工科本科教学大纲规定的高等数学的教学内容)数学专业组竞赛内容含数学分析、高等代数和解析几何(均为数学专业本科教学大纲规定的教学内容),所占比重分别为50%、35%及15%左右3) 报名办法: 2011年9月30日前按所在省、直辖市、自治区数学会或学会委托的承办大学的要求报名。

      4) 竞赛组织工作:分区预赛由各省(市、区、军队院校)数学会负责组织选拔,使用全国统一试题,在同一时间内进行考试决赛由全国大学生数学竞赛委员会和承办单位负责组织实施5) 竞赛收费标准: 每个参赛学生要向参赛单位交报名费60元,其中50元用于分赛区,10元交给全国大学生数学竞赛组委会,分别用于分区预赛和决赛阶段竞赛工作的组织、命题、评奖、颁奖等项费用6) 奖项的设立: 设赛区(一般以省、市、自治区作为赛区,军队院校为一个独立赛区)奖与全国决赛奖按照重点学校与非重点学校,数学类专业与非数学类专业分别评奖每个赛区的获奖总名额不超过总参赛人数的15%(其中一等奖、二等奖、三等奖分别占各类获奖总人数的20%、30%、50%)冠名为“第三届全国大学生数学竞赛(**赛区)*等奖” 决赛奖参加全国决赛的总人数不超过300人每个赛区参加决赛的名额不少于5名(其中数学类2名,非数学类3名),由各赛区在赛区一等奖获得者中推选最后入选名单由竞赛组织委员会批准决赛阶段的评奖等级按绝对分数评奖分区预赛和决赛的获奖证书均加盖“中国数学会普及工作委员会”的公章,获奖证书由承办单位统一印制每份获奖证书,承办单位收取工本费5元。

      8)命题、阅卷、评奖工作:分区预赛和决赛的试题由全国大学生数学竞赛委员会统一组织专家命题分区预赛的试卷印刷、保密、阅卷、评奖工作,由各个赛区统一安排,由各赛区的竞赛负责人统一部署各赛区在考试结束后,当堂密封试卷,及时送交到赛区指定试卷评阅点集中阅卷评奖工作由各赛区自行组织决赛阶段的试卷印刷、保密、评阅工作在全国大学生数学竞赛委员会的领导下,由承办单位组织进行评奖工作由全国大学生数学竞赛委员会组织专家组评定9)决赛试题和获奖名单将在全国大学生数学竞赛网站上公布中国数学会普及工作委员会二〇一一年五月十二日附:全国大学生数学竞赛委员会名单第三届全国大学生数学竞赛组织委员会名单全国大学生数学竞赛委员会主任:林群院士(中国科学院数学与系统科学研究院)副主任:李伟固教授(北京大学数学学院) 高宗升教授(北京航空航天大学数学学院)吴建平教授(首都师范大学数学学院) 委员(以汉语拼音为序):崔玉泉教授(山东大学数学学院) 冯良贵教授(国防科技大学理学院)楼红卫教授(复旦大学数学科学学院) 刘伟安教授(武汉大学数学与统计学院)薛小平教授(哈尔滨工业大学数学系) 徐伟教授(西北工业大学理学院)吴敏教授(华南理工大学理学院) 杨虎教授(重庆大学数学与统计学院)周泽华教授(天津大学数学系)全国各赛区负责人全国大学生数学竞赛办公室:北京航空航天大学数学与系统科学学院(主315室)秘 书:秦安安联系地址:北京市海淀区学院路37号北京航空航天大学数学与系统科学学院邮 编:100191联系:010-82317932,13683382696Email: qinanan@第三届全国大学生数学竞赛组织委员会主 任:陈以一教授(同济大学副校长)副主任:廖宗廷教授(同济大学教务处处长) 黄自萍教授(上海市数学会副理事长,同济大学数学系教授)边保军教授(同济大学数学系系主任)秘书长:蒋凤瑛(同济大学数学系副系主任)(Email: fyjiang@,:021-65983243,021-65983245,13918299931)组委会联系人:廖洒丽(同济大学数学系办公室)(Email: liaosali@,:021-65983245,13816508681) 中国大学生数学竞赛竞赛大纲(初稿)为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。

      一、竞赛的性质和参赛对象“中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生二、竞赛的内容“中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下:Ⅰ、数学分析部分一、集合与函数1. 实数集、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理.2. 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、上的闭矩形套定理、聚点定理、有限复盖定理、基本点列,以及上述概念和定理在上的推广.3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性定理,初等函数以及与之相关的性质. 二、极限与连续1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质).2. 数列收敛的条件(Cauchy准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限及其应用.3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式性质、迫敛性),归结原则和Cauchy收敛准则,两个重要极限及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O与o的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系.4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性).三、一元函数微分学1.导数及其几何意义、可导与连续的关系、导数的各种计算方法,微分及其几何意义、可微与可导的关系、一阶微分形式不变性.2.微分学基本定理:Fermat定理,Rolle定理,Lagrange定理,Cauchy定理,Taylor公式(Peano余项与Lagrange余项).3.一元微分学的应用:函数单调性的判别、极值、最大值和最小值、凸函数及其应用、曲线的凹凸性、拐点、渐近线、函数图象的讨论、洛必达(LHospital)法则、近似计算. 四、多元函数微分学1. 偏导数、全微分及其几何意义,可微与偏导存在、连续之间的关系,复合函数的偏导数与全微分,一阶微分形式不变性,方向导数与梯度,高阶偏导数,混合偏导数与顺序无关性,二元函数中值定理与Taylor公式.2.隐函数存在定理、隐函数组存在定理、隐函数(组)求导方法、反函数组与坐标变换.3.几何应用(平面曲线的切线与法线、空间曲线的切线与法平面、曲面的切平面与法线).4.极值问题(必要条件与充分条件),条件极值与Lagrange乘数法.五、一元函数积分学1. 原函数与不定积分、不定积分的基本计算方法(直接积分法、换元法、分部积分法)、有理函数积分:型,型.2. 定积分及其几何意义、可积条件(必要条件、充要条件:)、可积函数类.3. 定积分的性质(关于区间可加性、不等式性质、绝对可积性、定积分第一中值定理)、变上限积分函数、微积分基本定理、N-L公式及定积分计算、定积分第二中值定理.4.无限区间上的广义积分、Canchy收敛准则、绝对收敛与条件收敛、非负时的收敛性判别法(比较原则、柯西判别法)、Abel判别法、Dirichlet判别法、无界函数广义积分概念及其收敛性判别法.5. 微元法、几何应用(平面图形面积、已知截面面积函数的体积、曲线弧长与弧微分、旋转体体积),其他应用.六、多元函数积分学1.二重积分及其几何意义、二重积分的计算(化为累次积分、极坐标变换、一般坐标变换).2.三重积分、三重积分计算(化为累次积分、柱坐标、球坐标变换).3.重积分的应用(体积、曲面面积、重心、转动惯量等).4.含参量正常积分及其连续性、可微性、可积性,运算顺序的可交换性.含参量广义积分的一致收敛性及其判别法,含参量广义积分的连续性、可微性、可积性,运算顺序的可交换性.5.第一型曲线积分、曲面积分的概念、基本性质、计算.6.第二型曲线积分概念、性质、计算;Green公式,平面曲线积分与路径无关的条件.7.曲面的侧、第二型曲面积分的概念、性质、计算,奥高公式、Stoke公式,两类线积分、两类面积分之间的关系. 七、无穷级数1. 数项级数级数及其敛散性,级数的和,Cauchy准则,收敛的必要条件,收敛级数基本性质;正项级数收敛的充分必要条件,比较原则、比式判别法、根式判别法以及它们的极限形式;交错级数的Leibniz判别法;一般项级数的绝对收敛、条件收敛性、Abel判别法、Dirichlet判别法.2. 函数项级数函数列与函数项级数的一致收敛性、Cauchy准则、一致收敛性判别法(M-判别法、Abel判别法、Dirichlet判别法)、一致收敛函数列、函数项级数的性质及其应用.3.幂级数幂级数概念、Abel定理、收敛半径与区间,幂级数的一致收敛性,幂级数的逐项可积性、可微性及其应用,幂级数各项系数与其和函数的关系、函数的幂级数展开、Taylor级数、Maclaurin级数.4.Fourier级数三角级数、三角函数系的正交性、2及2周期函数的Fourier级数展开、 Beseel不等式、Riemanm-Lebesgue定理、按段光滑函数的Fourier级数的收敛性定理.Ⅱ、高等代数部分一、 多项式1. 数域与一元多项式的概念2. 多项式整除、带余除法、最大公因式、辗转相除法3. 互素、不可约多项式、重因式与重根.4. 多项式函数、余数定理、多项式的根及性质.5. 代数基本定理、复系数与实系数多项式的因式分解.6. 本原多项式、Gauss引理、有理系数多项式的因式分解、Eisenstein判别法、有理数域上多项式的有理根.7. 多元多项式及对称多项式、韦达(Vieta)定理.二、 行列式。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.