
实验: 静水压强.doc
14页实验八 静水压强水静力学主要研究液体在平衡状态下的静水压强分布规律,进而进行建筑物的平面及曲面静水总压力的计算处于静止状态的液体质点之间以及液体质点与固体边壁之间的相互作用,是通过压强的形式来表现的下面我们进行室内的静水压强实验一、实验目的1.加深理解水静力学基本方程式及等压面的概念2.计算密封容器内静止液体表面及其内部某空间点的静水压强3.观察液体表面压强变化时,液体压强的传递现象和传递规律4.学会用静水压强法求液体的容重二、实验原理假设密封容器的液体表面压强为P0,当对液体的表面加压时,即使P0>Pa,从U形管C可以看到有压力差产生,U形管C与密封容器上部空气连通的一面,液面下降,而与大气相通的一面,液面上升由此可知,液面下降的表面压力,即是密封容器内液体表面压力P0,即:P0=Pa+ρgh,是U形管液面上升的高度当密封容器内压力P0下降时,U形管液面呈现相反的现象,即:P0<Pa,这时密封容器内液体表面压力P0=Pa-ρgh,h为液面下降的高度如果对密封容器的液体表面加压时,其容器内部的压力向各个方向传递,在右侧的测压管中,可以看到由于A、B两点在容器内的淹没深度h不同,在压力向各个点传递时,先到A点后到B点。
在测压管中反映出的是A管的液体柱先上升,而B管的液柱滞后A上升,当停止加压时,A、B两点在同一水平面上静水压强:液体内垂直于单位面积上的压应力叫做静水压强其单位可以用kPa、kg/cm2、mmHg或水柱高度表示静水压强方程式:P=P0+h (8-1)式中:P——计算点的压强P0——液体表面所受气体的压强,也叫做表面压强——水的容重h——计算点的深度h——相对压强图8-1 静水压强仪加压器C管放水阀A管B管密封容器通气阀通气阀液面等压面是由静水压强相等的各点所构成的面静止液体表面是一水平面,也是一个等压面在同一液体内等压面是一系列的水平面两种液体的分界也是一个等压面根据压强方程式:P0 +=Pa所以:= (8—2)根据上式可计算液体的容重三、仪器结构静水压强仪:由密封容器、加压器(连接在通气阀上)、A管、B管、U形管C、放水阀等组成四、实验步骤1、打开密闭容器上部的通气阀,使容器表面压强等于大气压强,同时打开A、B、C管和中间测压管的阀门,此时,两根测压管和中间测压管中的水位及容器的水位保持一平,U形管中无高差然后关闭通气阀2、用加压器缓慢向液体表面加压,使液体表面压强大于大气压强,观察各测压管中的水位变化过程。
记录,最终的上升高度可先把左右两侧测压管的阀门关闭,然后再打开,使水位徐徐上升,以增加演示效果3、打开通气阀排气,使表面压强恢复到大气压,液面恢复到同一水平面上,然后再关闭通气阀4、打开密封容器底部的放水阀,放出一部分水,造成密封容器内压力下降,使液体表面出现真空观察各测压管中的水位记录各管最终水位5、重新做一次,并记录测压管读数五、实验成果及思考题1.填写实验记录表(8-1)表8-1水位表压1234液面高度P0 ﹥PaP0﹤Pa 2、计算不同实验条件下密封容器内液体表面的压强值3、计算不同条件下A、B两点的静水压强值4、在P0>Pa的条件下,计算密封容器内液体的表面压强,并计算A,B两点的相对和绝对压强5、在P0 一、实验目的1.验证伯努力能量方程,加深对方程的理解;2.学会各种水头的测试和计量方法;3.观察并理解毕托管测速方法的原理二、实验原理水流质点在流动的过程中具有位置高度,压力和速度,也就是说水流质点在流动的过程中具有位能、压能和动能,这三种能量可用水柱高表示对于不可压缩理想液体(不存在粘滞性,液体的内摩擦力为零,故所做的功也为零)来说,水流质点从第一断面流向第二段面时这三种能量的变化关系可用伯努利方程表示:因水流质点从一点流向另一点的过程中要消耗能量,降低水头,因此实际流体的水头线应是一条倾斜的曲线三、仪器结构 水泵电测流量装置及计量水箱出水阀门伯努力方程试验管测压管 恒水位水箱进水阀门蓄水箱排水阀通气阀伯努利方程实验仪(图9-1)图9-1 伯努利方程实验仪伯努利方程实验仪主要由恒水位木箱、伯努利方程实验管、测压管、蓄水箱、离心泵供水系统和电测流量装置等组成恒水箱靠溢流来维持其恒定的水位,在水箱左下部装接水平放置的伯努利方程实验管,恒水位水箱中的水可经过伯努利方程实验管以恒定流流出,并可通过出水阀门调节其出水量恒定流以一定流量流经试验管道时,通过安装在实验管的截面上的测压管(8根),可以观测到相应截面上的水位值,从而可以分析管道中的稳定液流的各种能量形式、大小及其相互转化规律。 实验时,为了测定恒定流的流量,在出水端装有回水箱和计量水箱用体积法测流量(量筒测量体积,秒表计时)伯努利方程试验管上的每个测量截面上的一组测压管,具有相当于毕托管的结构组成,所以,通过该实验装置,也可以进行毕托管测流速的实验四、实验步骤1.实验前的准备(1)关闭出水阀门2)打开进水阀门,按下流量显示仪上的水泵开关,启动水泵,向恒水位水箱上水3)在水箱接近放满时,调节阀门,使恒水位水箱达到溢流水平,并保持有一定的溢流4)适度打开出水阀门,使伯努利方程试验管出流,此时,恒水位水箱仍能保持恒水位,且还有一定的溢流否则,应调节进水阀门,使其达到恒水位并有适当溢流整个实验过程中都应满足这个要求)5)实验测试之前,在作上述准备工作的过程中,应排尽管路和测压管中的空气6)测试前,应仔细检查并调节电测流装置,使其能够正常工作2.进行测试具体步骤如下:(1).阀门开到大、小、中,稳定,观测各测压管读数,测量流量,记录数据这里的三中状态均应该保持测压管中有数据可读(即有压流动状态);(2).选择一次大流量情况下,绘制测压管水头线和总水头线将以上测试数据记入实验记录表(表9-1)表9-1断面z(cm)+hw流量(ml/s)0- 01- 12- 23- 34- 45205200520h01=h12=h23=h34=说明:各测量截面上的两个测压管,一个测压管测定的是相应截面的总水头,另一个测压管测定的是同一截面上的测压管水头,把这些实验数据直接记入实验记录表相应的栏中。 在表中还应记录各工况的液体流量、试验管路的内径和位置水头五、数据整理及思考题1.伯努利方程实验(1)在测试所得实验数据基础上,计算出伯努利方程试验管各测试截面的相应流速水头和压强水头:流速水头:总水头—测压管水头压强水头:测压管水头—位置水头Z(2)绘制一定工况下的四个测试截面的各种水头和总水头的水头线3)运用伯努利方程进行分析,解释各水头的变化规律,例如:①可以看出能量损失沿着流体流动的方向是增大的;②2截面和1截面,其位置水头相同,但2比1的压强水头大,这是由于管径变粗,流速减慢,流速水头转变为压强水头;③3截面与2截面比较,其位置水头相同,而3的压强水头小了,这是压强水头转变为流速水头了;④4截面与3截面比较,两管径相同,流速水头基本相同,但4的压强水头比3的压强水头增大了,这是由于位置水头转变为压强水头了;⑤实验结果还验证了连续方程,对于不可压缩流体的稳定流动,当流量一定时,管径粗的地方流速小,细的地方流速大2.测速实验能量方程实验管上四组测压管的任一组都相当于一个毕托管,可测得管内的流体速度由于本实验台将总水头测压管置于能量方程实验管的轴线,所以测得的动压头代表了轴心处的最大流速。 皮托管求点速度公式为:此处,为相应截面上两侧压管的水头差(即流速水头)而管内的平均流速可以通过流量来确定,平均流速公式为:在进行能量方程实验的同时,就可以测定出各点的轴心速度和平均速度测试结果可记入表9-2表9-2编号流速项目Ⅰ管径:mmⅡ管径:mmⅢ管径:mmⅣ管径:mm轴心速度V(m/s)平均速度管径:mm实验十 雷诺实验能量方程实验表明,实际液体由于具有粘滞性,在流动过程中会产生水流阻力,克服阻力就要损耗一部分机械能,转化为热能,造成水头损失水头损失与液体的物理性质、边界条件和液体的流动型态有着密切的关系判别液体流动型态的方法通常利用雷诺数判别法1885年,英国科学家雷诺通过实验揭示了实际液体流动具有两种不同型态——层流和紊流并得出了判别流态的标准雷诺数一、实验目的1、实际观测液体流动的两种流态,加深对层流和紊流的认识2、测定液体(水)在圆管中流动的临界雷诺数,学会其测定的方法二、实验原理自然界中实际液体运动存在两种流动型态——层流、紊流层流:水流质点(水流运动最小点)互不混杂的成层流动紊流:水流质点相互混杂的流动层流和紊流用雷诺数判别雷诺数可用下式计算: (10-1)式中:Re——雷诺数。 V——流体在园管中的平均流速d——圆管直径——流体的运动粘滞性系数(取决于分子间吸引力的大小,计算时可根据液体温度从表中查出)由层流变紊流时的速度叫高临界流速,用高临界流速计算的雷诺数叫上临界雷诺数由紊流变层流时的速度叫低临界流速,用高临界流速计算的雷诺数叫下临界雷诺数圆管液流中的下临界雷诺数是一个比较稳定的数值圆管中液流中的上临界雷诺数是一个不稳定的数值在实际工作中,水流被扰动而处于紊流状态的形式是普遍存在的,所以,上临界雷诺数不宜作为判别标准,通常采用下临界雷诺数作为判别标准﹤2000水流为层流﹥2000水流为紊流三、仪器结构见图(10-1)雷诺仪的供水端有用来保持水位不变的恒水位水箱、在水箱的下部水平放置的长直玻璃圆管(雷诺实验管)实验管与水箱相通,恒水位水箱中的水可以经过玻璃实验管恒定流出,实验管的另一端装有出水阀门,可用以调节出水的流量阀门的下面装有回水水箱和计量水箱,计量水箱里装有电测流量装置(由浮子、光栅计量器和光点传感器等组成),可以在电测量仪上直接显示出实验时的流体流量(数字显示出流体出流体积W[立升]和相应的出流时间t[秒])在恒水位水箱的上部装有有色液盒,其中的有色液体可经细管引流到玻璃试验管的进口处。 有色液盒下部装有调节小阀门,。
