
集合定义及练习题.doc
6页集合定义及练习题集合的概念 一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元集合的分类: 并集 :以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B} 交集: 以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}补集:属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不属于A}空集:包含于任何集合,但不能说“空集属于任何集合无限集: 定义:集合里含有无限个元素的集合叫做无限集 有限集:令N*是正整数的全体,且N_n={1,2,3,……,n},如果存在一个正整数n,使得集合A与N_n一一对应,那么A叫做有限集合集合元素的性质: 1.确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合这个性质主要用于判断一个集合是否能形成集合 2.互异性:集合中任意两个元素都是不同的对象。
如写成{1,1,2},等同于{1,2}互异性使集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作这个集合的一个元素 3.无序性:{a,b,c}{c,b,a}是同一个集合 4.纯粹性:所谓集合的纯粹性,用个例子来表示集合A={x|x<2},集合A 中所有的元素都要符合x<2,这就是集合纯粹性 5.完备性:仍用上面的例子,所有符合x<2的数都在集合A中,这就是集合完备性完备性与纯粹性是遥相呼应的常用数集的符号: (1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N (2)非负整数集内排除0的集,也称正整数集,记作N+(或N*) (3)全体整数的集合通常称作整数集,记作Z (4)全体有理数的集合通常简称有理数集,记作Q (5)全体实数的集合通常简称实数集,记作R (6)复数集合计作C集合的表示方法:常用的有列举法和描述法 1.列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法{1,2,3,……} 2.描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法叫做描述法。
{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0












