好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2025学年广西钦州市钦南区钦州港中学数学高二上期末检测模拟试题含解析.doc

19页
  • 卖家[上传人]:玥1****知
  • 文档编号:593919411
  • 上传时间:2024-10-12
  • 文档格式:DOC
  • 文档大小:1.08MB
  • / 19 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 2025学年广西钦州市钦南区钦州港中学数学高二上期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.对于两个平面、,“内有无数多个点到的距离相等”是“”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知定义在R上的函数满足,且当时,,则下列结论中正确的是( )A. B.C. D.3.《九章算术》是我国古代的数学巨著,书中有如下问题:“今有大夫、不更、簪褭、上造、公士,凡五人,共出百銭.欲令高爵出少,以次渐多,問各幾何?”意思是:“有大夫、不更、簪褭、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成递增的等差数列,这5个人各出多少钱?”在这个问题中,若公士出28钱,则不更出的钱数为( )A.14 B.16C.18 D.204.已知为圆:上任意一点,则的最小值为()A. B.C. D.5.数学家歌拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线.已知的三个顶点分别为,,,则的欧拉线方程是()A. B.C. D.6.设,直线,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件7.有下列三个命题:①“若,则互为相反数”的逆命题;②“若,则”的逆否命题;③“若,则”的否命题.其中真命题的个数是A.0 B.1C.2 D.38.直线x+y﹣1=0被圆(x+1)2+y2=3截得的弦长等于(  )A. B.2C.2 D.49.设为坐标原点,直线与抛物线C:交于,两点,若,则的焦点坐标为()A. B.C. D.10.对于公差为1的等差数列,;公比为2的等比数列,,则下列说法不正确的是( )A.B.C.数列为等差数列D.数列的前项和为11.已知函数,则下列判断正确的是()A.直线与曲线相切B.函数只有极大值,无极小值C.若与互为相反数,则的极值与的极值互为相反数D.若与互为倒数,则的极值与的极值互为倒数12.已知圆和圆恰有三条公共切线,则的最小值为()A.6 B.36C.10 D.二、填空题:本题共4小题,每小题5分,共20分。

      13.教育部门对某校学生的阅读素养进行调研,在该校随机抽取了100 名学生进 行百分制检测,现将所得的成绩按照 ,分成 6 组,并根据所得数据作出了频率分布直方图 (如图所示),则成绩在这组的学生人数是________.14.下图是4个几何体的展开图,图①是由4个边长为3的正三角形组成;图②是由四个边长为3的正三角形和一个边长为3的正方形组成;图③是由8个边长为3的正三角形组成;图④是由6个边长为3的正方形组成若直径为4的球形容器(不计容器厚度)内有一几何体,则该几何体的展开图可以是______(填所有正确结论的番号)15.拋物线的焦点坐标为___________.16.过点,且垂直于的直线方程为_______________.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)已知椭圆:的一个焦点坐标为,离心率.(1)求椭圆的方程;(2)设为坐标原点,椭圆与直线相交于两个不同的点A、B,线段AB的中点为M.若直线OM的斜率为-1,求线段AB的长;(3)如图,设椭圆上一点R的横坐标为1(R在第一象限),过R作两条不重合直线分别与椭圆交于P、Q两点、若直线PR与QR的倾斜角互补,求直线PQ的斜率的所有可能值组成的集合.18.(12分)已知分别是椭圆的左、右焦点,点是椭圆上的一点,且的面积为1.(1)求椭圆的短轴长;(2)过原点的直线与椭圆交于两点,点是椭圆上的一点,若为等边三角形,求的取值范围.19.(12分)已知双曲线C:(,)的一条渐近线的方程为,双曲线C的右焦点为,双曲线C的左、右顶点分别为A,B(1)求双曲线C的方程;(2)过右焦点F的直线l与双曲线C的右支交于P,Q两点(点P在x轴的上方),直线AP的斜率为,直线BQ的斜率为,证明:为定值20.(12分)在一个盒子中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4,先从盒子中随机取出一个球,该球的编号记为,将球放回盒子中,然后再从盒子中随机取出一个球,该球的编号记为.(1)写出试验的样本空间;(2)求“”的概率.21.(12分)已知圆与直线相切(1)求圆O的标准方程;(2)若线段AB的端点A在圆O上运动,端点B的坐标是,求线段AB的中点M的轨迹方程22.(10分)已知正项数列的前项和满足(1)求数列的通项公式;(2)若,求数列的前项和.参考答案一、选择题:本题共12小题,每小题5分,共60分。

      在每小题给出的四个选项中,只有一项是符合题目要求的1、B【解析】根据平面的性质分别判断充分性和必要性.【详解】充分性:若内有无数多个点到的距离相等,则、平行或相交,故充分性不成立;必要性:若,则内每个点到的距离相等,故必要性成立,所以“内有无数多个点到的距离相等”是“”的必要不充分条件.故选:B.2、B【解析】由可得,利用导数判断函数在上的单调性,由此比较函数值的大小确定正确选项.【详解】∵∴ ,当时,,∴ ,故∴ 在内单调递增,又,∴,所以故选:B3、B【解析】由题可知这是一个等差数列,前项和,,列式求基本量即可.【详解】设每人所出钱数成等差数列,公差为,前项和为,则由题可得,解得,所以不更出的钱数为.故选:B4、C【解析】设,则的几何意义为圆上的点和定点连线的斜率,利用直线和圆相切,即可求出的最小值;【详解】圆,它圆心是,半径为1,设,则,即,当直线和圆相切时,有,可得,,的最小值为:,故选:5、B【解析】根据的三个顶点坐标,先求解出重心的坐标,然后再根据三个点坐标求解任意两条垂直平分线的方程,联立方程,即可算出外心的坐标,最后根据重心和外心的坐标使用点斜式写出直线方程.【详解】由题意可得的重心为.因为,,所以线段的垂直平分线的方程为.因为,,所以直线的斜率,线段的中点坐标为,则线段的垂直平分线的方程为.联立,解得,则的外心坐标为,故的欧拉线方程是,即故选:B.6、A【解析】由可求得实数的值,再利用充分条件、必要条件的定义判断可得出结论.【详解】若,则,解得或,因此,“”是“”的充分不必要条件.故选:A.7、B【解析】①写出命题的逆命题,可以进行判断为真命题;②原命题和逆否命题真假性相同,而通过举例得到原命题为假,故逆否命题也为假;③写出命题的否命题,通过举出反例得到否命题为假【详解】①“若,则互为相反数”的逆命题是,若互为相反数,则;是真命题;②“若,则”,当a=-1,b=-2,时不满足,故原命题为假命题,而原命题和逆否命题真假性相同,故得到命题为假;③“若,则”的否命题是若,则,举例当x=5时,不满足不等式,故得到否命题是假命题;故答案为B.【点睛】这个题目考查了命题真假的判断,涉及命题的否定,命题的否命题,逆否命题,逆命题的相关概念,注意原命题和逆否命题的真假性相同,故需要判断逆否命题的真假时,只需要判断原命题的真假8、B【解析】如图,圆(x+1)2+y2=3的圆心为M(−1,0),圆半径|AM|=,圆心M (−1,0)到直线x+y−1=0的距离:|,∴直线x+y−1=0被圆(x+1)2+y2=3截得的弦长:.故选B.点睛: 本题考查圆的标准方程以及直线和圆的位置关系.判断直线与圆的位置关系一般有两种方法: 1.代数法:将直线方程与圆方程联立方程组,再将二元方 程组转化为一元二次方程,该方程解的情况即对应直 线与圆的位置关系.这种方法具有一般性,适合于判 断直线与圆锥曲线的位置关系,但是计算量较大.2.几何法:圆心到直线的距离与圆半径比较大小,即可判断直线与圆的位置关系.这种方法的特点是计算量较小.当直线与圆相交时,可利用垂径定理得出圆心到直线的距离,弦长和半径的勾股关系.9、B【解析】根据题中所给的条件,结合抛物线的对称性,可知,从而可以确定出点的坐标,代入方程求得的值,进而求得其焦点坐标,得到结果.【详解】因为直线与抛物线交于两点,且,根据抛物线的对称性可以确定,所以,代入抛物线方程,求得,所以其焦点坐标为,故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.10、B【解析】由等差数列的通项公式判定选项A正确;利用等比数列的通项公式求出,即判定选项B错误;利用对数的运算和等差数列的定义判定选项C正确;利用错位相减法求和,即判定选项D正确.【详解】对于A: 由条件可得,,即选项A正确;对于B:由条件可得,,即选项B错误;对于C:因为,所以,则,即数列是首项和公差均为的等差数列,即选项C正确;对于D:,设数列的前项和为,则,,上面两式相减可得,所以,即选项D正确.故选:B.11、C【解析】求出函数的导函数,通过在某点处的导数为该点处切线的斜率,求出切线方程,并且判断出极值,通过结合与互为相反数,若与互为倒数,分别判断的极值与的极值是否互为相反数,以及是否互为倒数.【详解】,,令,得,所以,因为,,所以曲线在点处的切线方程为,故A错;当时,存在使,且当时,;当时,,即有极小值,无极大值,故B错误;设为的极值点,则,且,所以,,当时,;当时,,故C正确,D错误.12、B【解析】由公切线条数得两圆外切,由此可得的关系,从而点在以原点为圆心,4为半径的圆上,记,由求得的最小值,平方后即得结论【详解】圆标准方程为,,半径为,圆标准方程为,,半径为,两圆有三条公切线,则两圆外切,所以,即,点在以原点为圆心,4为半径的圆上,记,,所以,所以的最小值为故选:B二、填空题:本题共4小题,每小题5分,共20分。

      13、20【解析】根据频率分布直方图求出成绩在这组的频率,从而可得出答案.【详解】解:由频率分布直方图可知,成绩在这组的频率为,所以成绩在这组的学生人数为(人).故答案为:20.14、①【解析】根据几何体展开图可知①正四面体、②正四棱锥、③正八面体、④正方体,进而求其外接球半径,并与4比较大小,即可确定答案.【详解】若几何体外接球球心为,半径为,①由题设,几何体为棱长为3的正四面体,为底面中心,则,,所以,可得,即,满足要求;②由题设,几何体为棱长为3的正四棱锥,为底面中心,则,所以,可得,即,不满足要求;③由题设,几何体为棱长为3的正八面体,其外接球直径同棱长为3的正四棱锥,故不满足要求;④由题设,几何体为棱长为3的正方体,体对角线的长度即为外接球直径,所以,不满足要求;故答案为:①15、【解析】化成抛物线的标准方程即可.【详解】。

      点击阅读更多内容
      猜您喜欢
      2025学年安徽宿州市泗县屏山镇中学英语高三第一学期期末复习检测模拟试题含解析.doc 2025学年内蒙古自治区乌海市乌达区英语高三第一学期期末综合测试模拟试题含解析.doc 2025学年江西省抚州临川市第二中学化学高一第一学期期末质量跟踪监视模拟试题含解析.doc 2025学年广东省广州市白云区广州外国语学校物理高二上期中复习检测试题含解析.doc 2025学年安徽省滁州市凤阳临淮、明光三中、关塘中学、定远三中四校高三语文第一学期期末检测试题含解析.doc 2025学年安徽省濉溪县化学高一第一学期期末检测试题含解析.doc 2025学年江西省南昌市东湖区第二中学物理高一第一学期期末检测模拟试题含解析.doc 2025学年江苏省重点中学高一生物第一学期期末监测试题含解析.doc 2025学年山西省太原市五十三中高三物理第一学期期末检测试题含解析.doc 2025学年山西省范亭中学高二化学第一学期期末预测试题含解析.doc 2025学年德州市重点中学高一物理第一学期期中考试试题含解析.doc 2025学年山东省六地市部分学校高一生物第一学期期末统考试题含解析.doc 2025学年内蒙古包头市包钢第四中学高一物理第一学期期末质量检测模拟试题含解析.doc 2025学年北京市大兴区市级名校高二物理第一学期期中综合测试试题含解析.doc 2025学年江苏扬州市生物高一第一学期期末质量检测模拟试题含解析.doc 2025学年内蒙古呼和浩特开来中学高三物理第一学期期末考试模拟试题含解析.doc 2025学年北京市第一五九中学高三英语第一学期期末考试试题含解析.doc 2025学年吉林省长春市第151中学化学高一第一学期期中考试模拟试题含解析.doc 2025学年商丘名校高一生物第一学期期末综合测试模拟试题含解析.doc 2025学年安徽省利辛县阚疃金石中学高一化学第一学期期中调研试题含解析.doc
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.