好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

拱桥主要尺寸拟定和拱轴线形的选择.doc

16页
  • 卖家[上传人]:mg****85
  • 文档编号:34516310
  • 上传时间:2018-02-25
  • 文档格式:DOC
  • 文档大小:321.50KB
  • / 16 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 拱桥主要尺寸拟定和拱轴线形选择第三章 拱桥主要尺寸拟定和拱轴线形选择第一节 拱桥的总体布置一、确定桥梁的设计标高和矢跨比拱桥的四个主要标高:桥面标高、拱顶底面标高、起拱线标高、基底标高桥面标高:由两岸线路的纵断面控制,且要保证桥下净空能满足宣泄洪水和通航的要求拱顶底面标高:由桥面标高减去拱顶填料(包括桥面铺装)厚度和拱圈厚度起拱线标高:尽量采用低拱脚,但要满足通航净空、排洪、流冰等条件和《桥规》要求基础底面标高:根据冲刷、基底承载力、冰冻等条件确定矢跨比的确定:矢跨比的大小与拱脚的水平推力成正比,与拱脚的垂直反力成反比常用的矢跨比: ①圬工拱桥 不小于 1/8②箱形拱 不小于 1/10③钢筋混凝土桁架拱、刚架拱 不小于 1/12二、不等跨的处理1、采用不同的矢跨比2、采用不同的拱脚标高3、调整拱上建筑的恒载重量第二节 拱轴线形的选择和拱上建筑的布置一、拱轴线形的选择选择拱轴线的原则:尽可能降低由于荷载产生的弯距数值理想拱轴线:与拱上各种荷载作用下的压力线相吻合工程上采用的“合理拱轴线”——恒载压力线圆弧线常用的拱轴线形式 抛物线悬链线二、拱上建筑的布置小跨径——实腹式(圆弧线、悬链线)大中跨径——空腹式(悬链线)拱桥主要尺寸拟定和拱轴线形选择轻型拱或矢跨比较小的大跨径钢筋混凝土拱——抛物线拱第三节 拱圈截面变化规律和截面尺寸的拟定一、拱圈截面变化规律或 在拱脚处: , ,则: 二、截面尺寸的拟定(一)主拱圈的宽度确定拱圈的宽度取决于桥面净空的宽度。

      一般均大于 ,如拱圈的宽度小于 ,则应验算拱圈的横向稳定性二)主拱圈高度的拟定1、石拱桥拱桥主要尺寸拟定和拱轴线形选择1)中小跨径:l0——主拱圈净跨径(cm);d——主拱圈高度(cm);M——系数,一般取 4.5—6,取值随矢跨比的减小而增大;K——荷载系数,对于公路—Ⅰ级为 1.0,对于公路—Ⅱ级为 1.22、箱形拱、桁架拱和刚架拱桥在确定箱形拱、拱片中距不大于 3.0m 的桁架拱和刚架拱时,可参考下列经验公式估算拱顶截面主拱圈(肋)的高度:式中:L——主拱圈净跨径(cm);a、b——系数,根据主拱圈的构造形式不同分别按表 3—3 一 l 采用;K——荷载系数,按表 3-3-l 采用a、b、K 系数值 a、b 多室箱 a=60,b=100; 单室箱 a=70,b=100箱形拱k 1a、b a=20,b=70桁架拱k 公路—Ⅰ级为 1.0,公路—Ⅱ级为 1.2a、b a=35,b=100刚架拱k 公路—Ⅰ级为 1.0,公路—Ⅱ级为 1.2拱桥主要尺寸拟定和拱轴线形选择第三章 拱桥设计与计算拱上建筑与主拱的联合作用:拱桥,实为多次超静定的空间结构,当活载作用于桥跨结构时,拱上建筑参与主拱圈共同承受活载的作用,这种现象,称为“拱上建筑与主拱的联合作用”或简称“联合作用”。

      拱式拱上建筑的联合作用较大,梁板式拱上建筑的联合作用较小第一节 悬链线拱的几何性质与弹性中心一、实腹式悬链线拱实腹式悬链线拱是采用结构重力压力线(不计弹性压缩)作为拱轴线实腹式悬链线拱的拱轴方程是根据拱轴线与压力线完全吻合的条件推导出来的取图 3-3-1 所示坐标系,设拱轴线即为结构重力压力线,故在结构重力作用下,拱顶截面的弯矩 Md=O,由于对称性,剪力 Qd=O,于是,拱顶截面仅有结构重力推力 Hg对拱脚截面取矩,则有:(3-3-1)式中: ——半拱结构重力对拱脚截面的弯矩;——拱的结构重力水平推力(不考虑弹性压缩);——拱的计算矢高对任意截面取矩,可得:(3-3-2)式中:Mx——任意截面以右的全部结构重力对该截面的弯矩值;y1一一以拱顶为坐标原点,拱轴上任意点的坐标式(3-4-2)即为求算结构重力压力线的基本方程将上式两边对 x 两次取导数得:(3-3-3)拱桥主要尺寸拟定和拱轴线形选择式(3-3-3)为求算结构重力压力线的基本微分方程,为了得到拱轴线(即结构重力压力线)的一般方程,必须知道结构重力的分布规律由图 3-3-1 所示,任意点的结构重力强度可用下式表示:(3-3-4)式中:g x——任意点的结构重力强度;gd——拱顶处结构重力强度;γ——拱上材料单位体积重量。

      在拱脚截面处: ,则由式(3-3-4)得(3-3-5)式中:g j——拱顶处结构重力强度;m——拱轴系数(或称拱轴线系数)3-3-6)由式(3-3-5)得:(3-3-7)将式(3-3-7)代入式(3-3-4)得:(3-3-8)再将式上式代入基本微分方程(3-3-3)为使最终结果简单,引入参数:,则可得:令(3-3-9)则:(3-3-10)以上为二阶非齐次常系数线形微分方程解此方程,则得拱轴线方程为:(3-3-11)上式一般称为悬链线方程拱桥主要尺寸拟定和拱轴线形选择以拱脚截面 , 代入上式得:通常,m 为已知值,则 K 值可由下式求得:(3-3-12)当 m=1 时,则 ,表示结构重力是均布荷载不难理解,在均布荷载作用下的压力线为二次抛物线,其方程为: 由悬链线方程(3-3-11)可以看出,当拱的矢跨比确定后,拱轴线各点的纵坐标将取决于拱轴系数 m各种 m 值的拱轴线坐标可直接由“拱桥”中查出,一般无须按式(3-3-11)计算下面介绍实腹式悬链线拱拱轴系数的确定:因为由图 3-3-1 知,拱顶处结构重力强度为:(3-3-13)在拱脚处 ,则其结构重力强度为:(3-3-14)式中:h d——拱顶填料厚度,一般为 O.30~0.50m;d——一拱圈厚度;γ——拱圈材料单位重; .γ 1——拱顶填料及路面的平均单位重;γ 2——拱腹填料平均单位重;φ J——拱脚处拱轴线的水平倾角。

      (3-3-15) 从式(3-3-13)和式(3-3-14)可以看出,这两式中除了 φ J为未知数外,其余均为已知数由于 φ J为未知,故不能直接算出 m 值,需用逐次近似法确定:即先根据跨径和矢高假定 m 值,由“拱桥”表(Ⅲ)-20 查得拱脚处的 cosφ J值,代人式(3-3-14)求得 gj后,再连同 gd一起代人式(3-3-6)算得 m 值然后与假定的 m 值相比较,如算得的 m 值与假定的m 值相符,则假定的 m 值即为真实值;如两者不符,则应以算得的 m 值作为假定值(为了计算的方便,m 值应按表 3-3-1 所列数值假定).重新进行计算,直至两者接近为止拱桥主要尺寸拟定和拱轴线形选择当拱的跨径和矢高确定之后,悬链线的形状取决于拱轴系数 m,其线形特征可用 点纵坐标的大小表示(图 3-3-2)拱跨 点的纵坐标 与 m 有下述关系:当 时,代入式(3-3-11) 得:∵∴ (3-3-16) 由上式可见,y 1/4随 m 的增大而减小,随 m 的减小而增大当 m 增大时,拱轴线抬高;反之,当 m 减小时,拱轴线降低(图 3-3-2)在一般的悬链线拱桥中,结构重力从拱顶向拱脚增加,g i>gd,因而 m>1。

      只有在均布荷载作用下 gj=gd时,方能出现 m=l 的情况由公式(3-3-16)可得,在这种情况下 y1/4=0.25f(图 3-3-2)在“拱桥"附录的计算用表中,除了可以根据拱轴系数 m 查得所需的表值之外,亦可借助相应的 查得同样的表值 与 m 的对应关系见表 3-3-l,读者可以根据计算的方便,利用 m 值或者 的数值查表,其结果是一致的二、空腹式悬链线拱空腹式拱桥中,桥跨结构的结构重力可视为由两部分组成:即主拱圈与实腹段自重的分布力与空腹部分通过腹孔墩传下的集中力(图 3-3-3a)由于集中力的存在,拱的结构重力压力线是一条在集中力下有转折的曲线,它不是悬链线,甚至也不是一条光滑的曲拱桥主要尺寸拟定和拱轴线形选择线在设计空腹式拱桥时,由于悬链线拱的受力情况较好,又有完整的计算表格可供利用,亦多用悬链线作为拱轴线为使悬链线拱轴与其结构重力压力线接近,一般采用“五点重合法”确定悬链线拱轴的 m 值,即要求拱轴线在全拱有五点(拱顶、两 点和两拱脚)与其三铰拱结构重力压力线重合(图 3-3-3b)由拱顶弯矩为零及结构重力的对称条件知,拱顶仅有通过截面重心的结构重力推力Hg,弯矩及剪力为零。

      在图 3-3-3a、b 中,由 得(3-3-17)由 ,得将式(3-3-17)代入上式可得:(3-3-18)式中: ——自拱顶至拱跨 点的结构重力对 截面的力矩等截面悬链线拱主拱圈结构重力对 及拱脚截面的弯矩 M l/4 、M i可由“拱桥”中查得求得 之后,可由(3-3-16)反求 m,即:(3-3-19)m 值确定:1、先假定一个 m 值,定出拱轴线,作图布置拱上建筑;2、计算 和 ;算出 m 值,如与假定的 m 值不符,则应以求得的 m 值作为假定值,重新计算,直至两者接近为止空腹式无铰拱桥,采用“五点重合法"确定的拱轴线,与相应三铰拱的结构重力压力线在拱顶、两 点和两拱脚五点重合,而与无铰拱的结构重力压力线(简称结构重力压力线)实际上并不存在五点重合的关系由式(3-3-23)可见,由于拱轴线与结构重力压力线有偏拱桥主要尺寸拟定和拱轴线形选择离,在拱顶、拱脚都产生了偏离弯矩研究证明,拱顶的偏离弯矩△M d为负而拱脚的偏离弯矩△M j为正,恰好与这两截面控制弯矩的符号相反这一事实说明,在空腹式拱桥中,用“五点重合法”确定的悬链线拱轴,偏离弯矩对拱顶、拱脚都是有利的因而,空腹式无铰拱的拱轴线,用悬链线比用结构重力压力线更加合理。

      三、拱轴线的水平倾角 φ将式(3—3—11)对 ξ 取导数得:(3-3-24)∵以式(3-3-24)代入上式得:(3-3-25)式中:由上式可见,拱轴水平倾角与拱轴系数 m 有关拱轴线上各点的水平倾角 tgφ,可直接由“拱桥"表(Ⅲ)-2 查出四、悬链线无铰拱的弹性中心在计算无铰拱的内力(结构重力、活载、温度变化、混凝土收缩和拱脚变位等)时,为了简化计算工作,常利用拱的弹性中心我们讨论的是对称拱,弹性中心在对称轴上基本结构的取法有两种:图 3—3—4a 为以悬臂曲梁为基本结构,图 3-3-4b 为以简支曲梁为基本结构在计算无铰拱的内力影响线时,为了简化计算手续,常用简支曲梁为基本结构由结构力学知,弹性中心距拱顶之距离为(图 3-3-4): (3-3-26) 式中:(3-3-27)其中:拱桥主要尺寸拟定和拱轴线形选择以 y1和 ds 代入式(3-3-26),并注意到等截面拱中 I 为常数,则:(3-3-28)系数 α 1可由“拱桥”查得第二节 结构重力作用下拱的作用效应计算 一、不考虑弹性压缩影响的结构重力效应1、实腹拱由公式 得结构重力水平推力为:拱脚的竖向反力:拱圈各截面的轴向力: 2、空腹式拱桥结构重力水平推力为:拱脚的竖向反力:二、弹性压缩引起的作用效应弹性中心处赘余力: 任意截面处:弯距:轴向力: 拱桥主要尺寸拟定和拱轴线形选择剪力: 三、恒载作用下截面的总效应(内力)弯距: 轴向力: 剪力: 考虑了结构重力弹性压缩之后,即使是不计偏离弯矩的影响,拱中仍有结构重力弯矩。

      这就说明,不论是空腹式拱还是实腹式拱,考虑弹性压缩后的结构重力压力线,将不可能和拱轴线重合按式(3-4-20)~式(3-4-22)计入偏离的影响之后,各截面的效应公式为:第三节 活载作用下拱的效应计算 一、不考虑弹性压缩影响的活载效应由于拱桥的活载压力线与拱轴线不重合,可采用效应影响线加载来计算拱的效应拱圈是偏心受压结构,常以最大正(负)弯矩控制设计首先计算水平力 H1、M 和拱脚的竖向反力 V对于车道荷载:水平力:弯 矩: 拱脚竖向反力:式中: —车道荷载横向分布系数;、 —分别为车道荷载的均布 荷载标准值和集中荷载;—最大正(。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.