好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

(word完整版)高等数学(上册)第二章教案.doc

21页
  • 卖家[上传人]:pu****.1
  • 文档编号:559554639
  • 上传时间:2023-08-17
  • 文档格式:DOC
  • 文档大小:1.45MB
  • / 21 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 第二章、一元函数微分学及其应用教学目的: 1、理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系 2、熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分3、 了解高阶导数的概念,会求某些简单函数的n阶导数 4、 会求分段函数的导数 5、 会求隐函数和由参数方程确定的函数的一阶、二阶导数,会求反函数的导数 教学重点: 1、导数和微分的概念与微分的关系; 2、导数的四则运算法则和复合函数的求导法则; 3、基本初等函数的导数公式; 4、高阶导数; 6、 隐函数和由参数方程确定的函数的导数 教学难点: 1、复合函数的求导法则; 2、分段函数的导数; 3、反函数的导数 4、隐函数和由参数方程确定的导数所需学时:24学时(包括:22学时讲授与2学时习题)第一节:导数的概念及其基本求导公式1、引入(切线与割线)在学习到数的概念之前,我们先来讨论一下物理学中变速直线运动的瞬时速度的问题。

      例:设一质点沿x轴运动时,其位置x是时间t的函数,y=f(x),求质点在t0的瞬时速度?我们知道时间从t0有增量△t时,质点的位置有增量 ,这就是质点在时间段△t的位移因此,在此段时间内质点的平均速度为:.若质点是匀速运动的则这就是在t0的瞬时速度,若质点是非匀速直线运动,则这还不是质点在t0时的瞬时速度我们认为当时间段△t无限地接近于0时,此平均速度会无限地接近于质点t0时的瞬时速度,为此就产生了导数的定义,如下:2、导数的定义定义:设函数y=f(x)在点x0的某一邻域内有定义,当自变量x在x0处有增量△x(x+△x也在该邻域内)时,相应地函数有增量,若△y与△x之比当△x→0时极限存在,则称这个极限值为y=f(x)在x0处的导数记为:还可记为:,函数y=f(x)在点x0处存在导数简称函数y=f(x)在点x0处可导,否则不可导若函数y=f(x)在区间(a,b)内每一点都可导,就称函数y=f(x)在区间(a,b)内可导这时函数y=f(x)对于区间(a,b)内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,我们就称这个函数为原来函数y=f(x)的导函数注:导数也就是差商的极限3、简单函数的求导下面我们利用导数的定义来求部分初等函数的导数:例3 设y=C(C为常数),求y’.解 ,则 ,即.因此,常数的导数为零.例4 设y=xn(为正整数),求y’.解 由二项式定理,得即 一般地,,例5 设y=sinx,求y’.解 即同理可求得 .例7 设,,求y’.解 当时,有则 即 4、左、右导数前面我们有了左、右极限的概念,导数是差商的极限,因此我们可以给出左、右导数的概念。

      若极限存在,我们就称它为函数y=f(x)在x=x0处的左导数若极限存在,我们就称它为函数y=f(x)在x=x0处的右导数注:函数y=f(x)在x0处的左右导数存在且相等是函数y=f(x)在x0处的可导的充分必要条件函数的和、差求导法则5、切线与法线方程函数y=f(x)在点处的导数f’(x0)就是曲线y=f(x)在点M处的切线的斜率,由导数的几何意义及直线的点斜式方程可知,曲线y=f(x)上点M处的切线方程为:法线方程为: 例8 求曲线y=1/x在点(1/2,2)处的切线方程与法线方程.解:曲线在点(1/2,2)处的切线斜率为k=y’=-4所以所求切线方程为y-2=-4(x-1/2)所求法线方程为y-2=1/4(x-1/2)6、函数的可导性与联系性的关系定理1 如果函数在点处可导,则它在点处一定连续.证明 因为函数在点处可导,则.又因为 所以,函数在点处连续.这个定理的逆定理不成立.即函数在点处连续,但函数在点处不一定可导. 例9 函数在点处连续. 事实上, 所以,函数在点处连续,但是在处没有导数.因为 因此,在处不可导.例9讨论函数在x=0处的连续性与可导性.解 由题设,f(0)=0又 即 所以,f(x)在x=0处连续.而极限 不存在,所以在处不可导.定理1说明函数在某点连续是函数在某点可导的必要条件,但不是充分条件,即可导一定连续,但连续不一定可导;另外,如果函数在某点处不连续,则它在该点处一定不可导.7、函数求导法则(1)函数的和差求导法则:两个可导函数的和(差)的导数等于这两个函数的导数的和(差).用公式可写为:(u+v)’=u’+v’。

      其中u、v为可导函数例10:已知,求y’解: 例11:已知,求y’解: (2)函数的积商求导法则常数与函数的积的求导法则法则:在求一个常数与一个可导函数的乘积的导数时,常数因子可以提到求导记号外面去用公式可写成: (cu)’=cu’例12:已知y=3sinx+4x2,求y’解: (3)函数的积的求导法则法则:两个可导函数乘积的导数等于第一个因子的导数乘第二个因子,加上第一个因子乘第二个因子的导数用公式可写成:(uv)’=u’v+uv’例13:已知,求y’解: 注:若是三个函数相乘,则先把其中的两个看成一项4)函数的商的求导法则法则:两个可导函数之商的导数等于分子的导数与分母导数乘积减去分母导数与分子导数的乘积,在除以分母导数的平方用公式可写成: 例14:已知y=tanx,求y’解:8、反函数求导法则根据反函数的定义,函数y=f(x)为单调连续函数,则它的反函数x=φ(y),它也是单调连续的.为此我们可给出反函数的求导法则,如下(我们以定理的形式给出):定理:若是x=φ(y)单调连续的,且φ(y)不等于0,,则它的反函数y=f(x)在点x可导,且有: 注:通过此定理我们可以发现:反函数的导数等于原函数导数的倒数。

      注:这里的反函数是以y为自变量的,我们没有对它作记号变换即:φ(y’)对y求导,f(x’)是对x求导例题:求y=arcsinx的导数.解答:此函数的反函数为x=siny,故x’=cosy则:例题:求y=arctanx的导数.解答:此函数的反函数为x=tany,x’=sec2y故则:9、求导公式与基本求导法则为了便于记忆与使用,将基本初等函数的导数公式及导数的四则运算法则总结如下:1)基本初等函数的求导公式(1)常数函数 (C为常数)(2)幂函数 (3)指数函数 (,),特别地,(4)对数函数 (,),特别地,(5)三角函数 (6)反三角函数,( ) ,() 2)导数的四则运算设,在点处可导,则(1);(2);(3).课后作业及小结:1、掌握导数的基本概念2、综合运用导数公式与求导法则进行计算3、综合运用反函数进行求导作业:P74.1,3,5,7,8第二节:复合函数的求导规则1、复合函数的求导法则定理1(复合函数的求导法则)定理1 设函数在点处可导,函数在对应点处可导,则复合函数在点处也可导,且有或简写为.证明 给以改变量,则取得对应的改变量又得到对应的改变量.因为存在,所以当时,有(当时,)或 因是中间变量,所以可能为零,但当时,由函数的连续性,上式对任意值都成立.不妨规定在时,取值为.这样,(1)式对是否为零都是正确的.所以即 .或 .其中表示函数对的导数,表示函数对的导数,表示函数对的导数.此定理说明,复合函数的导数等于函数对中间变量的导数乘以中间变量对自变量的导数.这一法则又称为链式法则.复合函数求导数法则可推广到多次复合的情形.例如 设,则复合函数的导数为例1 求函数y=(x2+1)10的导数.解 设y=u10,u=x2+1则 .例2 求函数的导数.解 设,则 .例3 求函数的导数. 解 .例4 求函数的导数.解 注:补充课本练习2、高阶导数(1)二阶导数的物理意义物体作变速直线运动时,瞬时速度是路程对时间的导数,即.而由物理知识知,加速度是速度对时间t的导数,即.从而.由此可看出,加速度是路程对时间t的导数的导数,称为对t的二阶导数,记作或.(2)二阶导数的概念一般地,如果函数的导数在点处可导,则称在点处的导数为函数在点处的二阶导数,记为,,或.类似地,的二阶导数的导数称为三阶导数,记为,,或.一般地,的阶导数的导数称为阶导数,记为,,或.(3)、n阶导数的计算例5 设,求其各阶导数.解 ,,,.例6 设,求其各阶导数.解 ,,…,.例7 设 ,求其各阶导数.解 ,,…,.同理可得:.例8 设,求其各阶导数.解 ,,,,一般地,.注:补充课本练习3、隐函数的导数我们知道用解析法表示函数,可以有不同的形式.若函数y可以用含自变量x的算式表示,像y=sinx,y=1+3x等,这样的函数叫显函数.前面我们所遇到的函数大多都是显函数.一般地,如果方程F(x,y)=0中,令x在某一区间内任取一值时,相应地总有满足此方程的y值存在,则我们就说方程F(x,y)=0在该区间上确定了x的隐函数y.把一个隐函数化成显函数的形式,叫做隐函数的显化。

      注:有些隐函数并不是很容易化为显函数的,那么在求其导数时该如何呢?下面让我们来解决这个问题!若已知F(x,y)=0,求dy/dx时,一般按下列步骤进行求解:a):若方程F(x,y)=0,能化为y=f(x)的形式,则用前面我们所学的方法进行求导;b):若方程F(x,y)=0,不能化为y=f(x)的形式,则是方程两边对x进行求导,并把y看成x的函数y=f(x),用复合函数求导法则进行例9 方程确定y是x的函数,求y的导数.解 方程两边对x求导,得,解出得 .例10 方程y=1+xey确定是的函数,求的导数.解 方程两边对求导,得y。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.