好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2024年中考初中数学知识点.pdf

33页
  • 卖家[上传人]:文***
  • 文档编号:595104111
  • 上传时间:2024-10-21
  • 文档格式:PDF
  • 文档大小:17.42MB
  • / 33 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 2024年中考初中数学学问点大全(具体、全面)第一章实数考点一、实数的概念及分类(3 分)1、实数的分类厂 正 有 理 数 有理数 零 P 有限小数和无限循环小数实数Y 匚 负 有 理 数 正无理数-L 无理数 0)厂 4a 0=i i=-=s ;留意jz的双重非负性:yL-a (03、立方根假如一个数的立方等于a,那么这个数就叫做a的立方根(或 a的三次方根)一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零留意:口=-短,这说明三次根号内的负号可以移到根号外面考点四、科学记数法和近似数(3 6分)1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的全部数字,都叫做这个数的有效数字2、科学记数法把一个数写做土a x 1 0”的形式,其中l 4 a G oa b,a b=G o a =b,abQa l a /?;=l a =/?;1 a 内 0/?2 o 考点六、,实数的运算(做题的基础,分值相当大)1、加法交换律a+bb+a2、加法结合律(Q +6)+c =+(Z?+c)3、乘法交换律ab=ba4、乘法结合律(ab)c-a(bc)5、乘法对加法的安排律a(b+c)=ab+ac6、实数的运算依次先算乘方,再算乘除,最终算加减,假如有括号,就先算括号里面的。

      其次章代数式考点一、整式的有关概念(3分)1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式单独的一个数或一个字母也是代数式2、单项式只含有数字及字母的积的代数式叫做单项式留意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如,这种表示就是错误的,应写成一个单项式中,全部字母的指数的和叫做这个单项式的次数如-5a 302c 是 6次单项式考点二、多项式(11分)1、多项式几个单项式的和叫做多项式其中每个单项式叫做这个多项式的项多项式中不含字母的项叫做常数项多项式中次数最高的项的次数,叫做这个多项式的次数单项式和多项式统称整式用数值代替代数式中的字母,依据代数式指明的运算,计算出结果,叫做代数式的值留意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入2)求代数式的值,有时求不出其字母的值,须要利用技巧,“整体”代入2、同类项全部字母相同,并且相同字母的指数也分别相同的项叫做同类项几个常数项也是同类项3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号2)括号前是“-把括号和它前面的“-”号一起去掉,括号里各项都变号。

      4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项整式的乘法:a =九都是正整数)=a都是正整数)(ab)“=(都是正整数)(a+b)(a b)ci b(a+6)ci+2ab+(a 6)=a 2 2ab+b-整式的除法:am+屋=心一(人都是正整数,a w 0)留意:(1)单项式乘单项式的结果仍旧是单项式2)单项式及多项式相乘,结果是一个多项式,其项数及因式中多项式的项数相同3)计算时要留意符号问题,多项式的每一项都包括它前面的符号,同时还要留意单项式的符号4)多项式及多项式相乘的绽开式中,有同类项的要合并同类项5)公式中的字母可以表示数,也可以表示单项式或多项式6)a=l(a H=!(a H 0,p为正整数)ap(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的考点三、因式分解(11分)1、因式分解把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式2、因式分解的常用方法(1)提公因式法:ab+ac=a(b+c)(2)运用公式法:a2-b2-(a+)(-/?)a2+2ab+b2-(a+b)2 a-2ab+b2-(a-b)2(3)分组分解法:ac+ad+bc+bd=(c+d)+b(c+d)=(a+b)(c+d)(4)十字相乘法:a+p+q)a+pq=(a+p)(a+q)3、因式分解的一般步骤:(1)假如多项式的各项有公因式,那么先提取公因式。

      2)在各项提出公因式以后或各项没有公因式的状况下,视察多项式的项数:2项式可以尝试运用公式法分解因式;3项式可以尝试运用公式法、十字相乘法分解因式;4项式及4项式以上的可以尝试分组分解法分解因式(3)分解因式必需分解到每一个因式都不能再分解为止考点四、分式(810分)1、分式的概念A A一般地,用A、B表示两个整式,A+B就可以表示成一的形式,假 如B中含有字母,式子一就叫做分式B B其中,A叫做分式的分子,B叫做分式的分母分式和整式通称为有理式2、分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变2)分式的变号法则:分式的分子、分母及分式本身的符号,变更其中任何两个,分式的值不变3、分式的运算法则a c _ ac a c _ a d _ a dx ;;x *b d bd b d b c be考点五、二次根式(初中数学基础,分值很大)1、二次根式式子G 32 0)叫做二次根式,二次根式必需满意:含有二次根号“、”;被开方数a 必需是非负数2、最简二次根式若二次根式满意:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。

      化二次根式为最简二次根式的方法和步骤:(1)假如被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简2)假如被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来3、同类二次根式几个二次根式化成最简二次根式以后,假如被开方数相同,这几个二次根式叫做同类二次根式4、二次根式的性质(1)(V a)2=a(a 0)0)(2)d a2=同=J -a(a Q,b 0)(4)5、二次根式混合运算二次根式的混合运算及实数中的运算依次一样,先乘方,再乘除,最终加减,有括号的先算括号里的(或先去括 号)第 三 章 方 程(组)考点一、一元一次方程的概念(6 分)1、方程:含有未知数的等式叫做方程2、方程的解:能使方程两边相等的未知数的值叫做方程的解3、等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式4、一元一次方程只 含 有 一 个 未 知 数,并 且 未 知 数 的 最 高 次 数 是 1 的 整 式 方 程 叫 做 一 元 一 次 方 程,其中方程a x +b=0(x 为未矢口数,a /0)叫做一元一次方程的标准形式,a 是未知数x的系数,b 是常数项。

      考点二、一元二次方程(6 分)1、一元二次方程只含有一个未知数,并且未知数的最高次数是2 的整式方程叫做一元二次方程2、一元二次方程的一般形式a/+6x+c=0(a w 0),它的特征是:等式左边是一个关于未知数x的二次多项式,等式右边是零,其中a/叫做二次项,a叫做二次项系数;b x 叫做一次项,b 叫做一次项系数;c 叫做常数项考点三、一元二次方程的解法(10分)1、干脆开平方法利用平方根的定义干脆开平方求一元二次方程的解的方法叫做干脆开平方法干脆开平方法适用于解形如(x +a)2 =6的一元二次方程依据平方根的定义可知,x +a是 b 的平方根,当匕之时,x+a +4 b ,x -a +4b,当 b 0)2a4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简洁易行,是解一元二次方程最常用的方法考点四、一元二次方程根的判别式(3 分)根的判别式一元二次方程a x?+6 x +c=0(/0)中,H -4 a c叫做一元二次方程ax2+6 x +c=0(a*0)的根的判别式,通 常 用“A”来表示,即A =/4 a c(1)当A0时,方程有两个不相等的实数根;(2)当=()时,方程有两个相等的实数根;(3)当0,y0;点 P(x,y)在其次象限O x 0 ;点 P(x,y)在第三象限O x 0,y 0,y 0b0/k/X-图像经过一、二、三象限,y 随 x的增大而增大。

      b0y,0/图像经过一、三、四象限,y 随 x的增大而增大K0kX图像经过一、二、四象限,y 随 x的增大而减小b0时,图像经过第一、三象限,y 随 x 的增大而增大;(2)当 k0时,y 随 x 的增大而增大;(2)当 k =公厂的形式自变量x 的取值范围是xWO的一切实数,函数的取值范围也是一切非零实数2、反比例函数的图像反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或其次、四象限,它们关于原点对称由于反比例函数中自变量xW O,函数yW O,所以,它的图像及x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但恒久达不到坐标轴3、反比例函数的性质反比例函数性质x 的取值范围是XW0,y 的取值范围是yW0当k0时,函数图像的两个分支分别在第一、三象限在每一象限内,y随 x 的增大而减小x 的取值范围是xWO,y 的取值范围是yWO;当k0时,函数图像的两个分支分别在其次、四象限在每一象限内,y随 x 的增大而增大4、反比例函数解析式的确定确定解析式的方法仍是待定系数法由于在反比例函数中,只有一个待定系数,因此只须要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。

      5、反比例函数中反比例系数的几何意义如下图,过反比例函数图像上任一点P 作 x 轴、y 轴 的 垂 线 PM,P N,则 所 得 的 矩 形 PM O N 的面积S=PM*PN=|x|=|xy|o y=xy=k,S=|A;|o第七章 二次函数考点一、二次函数的概念和图像(38分)1、二次函数的概念一般地,假如y=+z;x+c(a,仇是常数,a w 0),那么y 叫做x 的二次函数y=g?+法+式是常数,a w 0)叫做二次函数的一般式2、二次函数的图像二次函数的图像是一条关于对称的曲线,这条曲线叫抛物线抛物线的主要特征:有开口方向;有对称轴;有顶点3、二次函数图像的画法五点法:(1)先依据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴(2)求抛物线y =a x?+6 x +c 及坐标轴的交点:当抛物线及x轴有两个交点时,描出这两个交点A,B及抛物线及y轴的交点C,再找到点C的对称点D将这五个点按从左到右的依次连接起来,并向上或向下延长,就得到二次函数的图像当抛物线及x轴只有一个交点或无交点时,描出抛物线及y轴的交点C及对称点D由 C、M、D三点可粗略地画出二次函数的草图。

      假如须要画出比较精确的图像,可再描出一对对称点A、B,然后顺次连接五点,画出二次函数的图像考点二、二次函数的解析式(1 0 1 6 分)二次函数的解析式有三种形式:(1)一般式:y =o r?+fc t +c(a,4 c 是常数,a w 0)(2)顶点式:y =a(x-/z)2 +左(a,7 z,左是常数,a w 0)(3)当抛物线丁=必+x +c 及 x轴有交点时,即对应二次好方程a x?+c+c =0 有 实 根/和 乙 存在时,依 据 二 次 三 项 式 的 分 解 因 式ax+c =a(x-%)(x-/),二 次 函 数 y =ax2+c可转化为两根式y =工一七)(-工2)假如没有交点,则不能这样表示考点三、二次函数的最值(1 0 分)假如自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当时,b假如自变量的取值范围是苞元/,那么,首先要看是否在自变量取值范围王X 九 2 内,若在此范2ab围内,则 当 x=时,;若不在此范围内,则须要考虑函数在X 9 范围内的增减性,假如在此范围内,y2a随 x的。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.