
2025学年北京八中高一上数学期末质量跟踪监视试题含解析.doc
13页2025学年北京八中高一上数学期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上用2B铅笔将试卷类型(B)填涂在答题卡相应位置上将条形码粘贴在答题卡右上角"条形码粘贴处"2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案答案不能答在试题卷上3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液不按以上要求作答无效4.考生必须保证答题卡的整洁考试结束后,请将本试卷和答题卡一并交回一、选择题:本大题共10小题,每小题5分,共50分在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数是奇函数且在定义域内是增函数的是( )A. B.C. D.2.下列函数中,既是偶函数又在区间上单调递减的是()A. B.C. D.3.已知函数对任意都有,则等于A.2或0 B.-2或0C.0 D.-2或24.已知集合,则( )A. B.或C. D.或5.圆的半径为,该圆上长为的弧所对的圆心角是A. B.C. D.6.下列命题中是真命题的个数为()①函数的对称轴方程是;②函数的一个对称轴方程是;③函数的图象关于点对称;④函数的值域为A1 B.2C.3 D.47.已知为第二象限角,则的值是( )A.3 B.C.1 D.8.如果“,”是“”成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.不充分也不必要条件9.直线与曲线有且仅有个公共点,则实数 的取值范围是A. B.C. D.10.已知函数,则的大致图像为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。
11.如图所示,正方体的棱长为1,B′C∩BC′=O,则AO与A′C′所成角的度数为________.12.已知函数在区间上是增函数,则下列结论正确是__________(将所有符合题意的序号填在横线上)①函数在区间上是增函数;②满足条件的正整数的最大值为3;③.13.设角的顶点与坐标原点重合,始边与轴的非负半轴重合,若角的终边上一点的坐标为,则的值为__________14.已知是R上的奇函数,且当时,,则的值为___________.15.函数的定义域是____________.(用区间表示)16.已知角的终边过点,则______三、解答题:本大题共5小题,共70分解答时应写出文字说明、证明过程或演算步骤17.已知集合,集合当时,求及;若,求实数m的取值范围18.已知 cos (−α) =,sin (+β)= −,αÎ(,),βÎ(,).(1)求sin 2α的值;(2)求cos (α + β )的值.19.如图所示,在多面体中,四边形是正方形,,为的中点.(1)求证:平面;(2)求证:平面平面.20.设全集U是实数集,集合,集合.(1)求集合A,集合B;(2)求.21.在①;②.请在上述两个条件中任选一个,补充在下面题目中,然后解答补充完整的问题.在中,角所对的边分别为,__________.(1)求角;(2)求的取值范围.参考答案一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据指数函数、正切函数的性质,结合奇函数和单调性的性质进行逐一判断即可.【详解】A:当时,,所以该函数不是奇函数,不符合题意;B:由,设,因为,所以该函数是奇函数,,函数是上的增函数,所以函数是上的增函数,因此符合题意;C:当时,,当时,,显然不符合增函数的性质,故不符合题意;D:当时,,显然不符合增函数的性质,故不符合题意,故选:B2、A【解析】根据基本函数的性质和偶函数的定义分析判断即可【详解】对于A,因为,所以是偶函数,的图象是开口向下,顶点为原点,对称轴为轴,所以其在区间上单调递减,所以A正确,对于B,是非奇非偶函数,所以B错误,对于C,因为,所以是奇函数,所以C错误,对于D,,可知函数在递增,所以D错误,故选:A3、D【解析】分析:由条件可得,函数f(x)的图象关于直线x=对称,故f()等于函数的最值,从而得出结论详解:由题意可得,函数f(x)的图象关于直线x=对称,故f()=±2,故答案为±2点睛:本题考查了函数f(x)=Asin(ωx+φ)的图象与性质的应用问题,是基础题目.一般 函数的对称轴为a, 函数的对称中心为(a,0).4、C【解析】直接利用补集和交集的定义求解即可.【详解】由集合,可得:或,故选:C.【点睛】关键点点睛:本该考查了集合的运算,解决该题的关键是掌握补集和交集的定义..5、B【解析】由弧长公式可得:,解得.考点:弧度制.6、B【解析】根据二次函数的性质、三角函数的性质以及图象,对每个选项进行逐一分析,即可判断和选择.【详解】对①:函数的对称轴方程是,故①是假命题;对②:函数的对称轴方程是:,当时,其一条对称轴是,故②正确;对函数,其函数图象如下所示:对③:数形结合可知,该函数的图象不关于对称,故③是假命题;对④:数形结合可知,该函数值域为,故④为真命题.综上所述,是真命题的有2个.故选:.7、C【解析】由为第二象限角,可得,再结合,化简即可.【详解】由题意,,因为为第二象限角,所以,所以.故选:C.8、A【解析】利用充分条件和必要条件的定义判断.【详解】当,时,,故充分;当时,,,故不必要,故选:A9、A【解析】如图所示,直线过点, 圆的圆心坐标 直线与曲线相切时,,直线与曲线有且仅有个公共点,则实数 的取值范围是考点:直线与圆相交,相切问题10、B【解析】计算的值即可判断得解.【详解】解:由题得,所以排除选项A,D.,所以排除选项C.故选:B二、填空题:本大题共6小题,每小题5分,共30分。
11、30°【解析】∵A′C′∥AC,∴AO与A′C′所成的角就是∠OAC(或其补角).∵OC⊂平面BB′C′C,AB⊥平面BB′C′C,∴OC⊥AB.又OC⊥OB,AB∩BO=B,∴OC⊥平面ABO.又AO⊂平面ABO,∴OC⊥OA.在Rt△AOC中,,∴∠OAC=30°.即AO与A′C′所成角度数为30°.点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角12、①②③【解析】!由题函数在区间上是增函数,则由可得为奇函数,则①函数在区间(,0)上是增函数,正确;由 可得 ,即有满足条件的正整数的最大值为3,故②正确;由于 由题意可得对称轴 ,即有.,故③正确故答案为①②③【点睛】本题考查正弦函数的图象和性质,重点是对称性和单调性的运用,考查运算能力,属于中档题13、##0.5【解析】利用余弦函数的定义即得.【详解】∵角的终边上一点的坐标为,∴.故答案为:.14、【解析】由已知函数解析式可求,然后结合奇函数定义可求.【详解】因为是R上的奇函数,且当时,,所以,所以故答案为:15、【解析】函数定义域为 故答案为.16、【解析】根据三角函数的定义求出r即可.【详解】角的终边过点,,则,故答案为【点睛】本题主要考查三角函数值的计算,根据三角函数的定义是解决本题的关键.三角函数的定义将角的终边上的点的坐标和角的三角函数值联系到一起,.知道终边上的点的坐标即可求出角的三角函数值,反之也能求点的坐标.三、解答题:本大题共5小题,共70分。
解答时应写出文字说明、证明过程或演算步骤17、(1),或; (2)或.【解析】(1)当时,Q=,由集合的交、并、补运算,即可求解;(2)由集合的包含关系,得Q⊆P,讨论①Q=∅,②Q≠∅,运算可得解【详解】(1)当时,Q=,所以,或.(2)因为P∩Q=Q,所以Q⊆P,①当m-1>3m-2,即时,Q=∅,满足题意,②当m-1≤3m-2,即时,,解得,综合①②可得:实数m的取值范围或.【点睛】本题主要考查了集合的交、并、补运算及集合的包含关系的应用,其中解答中熟记集合的运算的基本方法,以及合理利用集合的包含关系,分类讨论求解是解答的关键,着重考查了分类讨论思想,以及运算与求解能力,属于基础题.18、(1)(2)【解析】(1)利用可以快速得到sin 2α的值;(2)以“组配角”去求cos (α + β )的值简单快捷.【小问1详解】∵,∴,∴,∴【小问2详解】,,,则又,,则故19、 (1) 见解析;(2) 见解析.【解析】(1)设与交于点,连接易证得四边形为平行四边形, 所以,进而得证;(2)先证得平面,再证得⊥平面,又,得平面,从而证得平面,即可证得.试题解析:(1)设与交于点,连接.∵分别为中点,∴∴,∴四边形为平行四边形,所以,又∴平面∴平面(2)平面⊥平面,又平面 平面,又平面,所以平面平面.20、(1),;(2),.【解析】(1)根据一元二次不等式的解法解出集合A,根据分式不等式解出结合B;(2)由交集、并集的概念和运算即可得出结果.【小问1详解】由题意知,,且【小问2详解】由(1)知,,,所以,.21、(1)条件选择见解析, (2)【解析】(1)若选①,由正弦定理得,即可求出;若选②,由正弦定理得,即可求出.(2)用正弦定理得表示出,,得到,利用三角函数求出的取值范围.【小问1详解】若选①,则由正弦定理得,因为,所以,所以,所以,又因为,所以,所以,即.若选②,则由正弦定理得,所以,所以,因为,所以,所以,又因为,所以.【小问2详解】由正弦定理得,所以,同理,由,故,所以由,所以,所以,所以的取值范围是.。
