
浙江省绍兴市稽东镇中学高二数学理联考试卷含解析.docx
6页浙江省绍兴市稽东镇中学高二数学理联考试卷含解析一、 选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知P(x,y)是直线上一动点,PA,PB是圆C:的两条切线,A、B是切点,若四边形PACB的最小面积是2,则的值为( ) A.3 B. C. D.2参考答案:D2. 若复数,则 ( ).A. B. C. D.参考答案:A3. 函数y=x2-lnx的单调递减区间为( )A.(-1,1] B.(0,1] C. [1,+∞) D.(0,+∞)参考答案:B∵,∴,由,解得,又,∴故选B.4. 给出四个命题:①若,则或;②若,则;③若,则;④若,且是奇数,则中一个是奇数,一个是偶数,那么( ).ks5uA.①的逆命题为真 B.②的否命题为真C.③的否命题为假 D.④的逆命题为假参考答案:A5. 设函数 则( )A.有最大值 B.有最小值 C.是增函数 D.是减函数参考答案:A6. 曲线?= 0所围成的区域中包含的最大圆的面积是( )(A) (B) (C) (D)参考答案:D7. 直线的倾斜角是( ). A. B. C. D.参考答案:B解:直线为,倾斜角,,故选.8. 设全集,则的值为( ) A 3 B 9 C 3或9 D 参考答案:C9. 已知,,则的值为()A. B. C. D.参考答案:A10. 已知函数 则不等式的解集是( )A. B. C. D. 参考答案:D略二、 填空题:本大题共7小题,每小题4分,共28分11. 若向量的夹角为,,则参考答案:略12. 从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有____________种。
用数字作答)参考答案:36种 略13. 如图所示:若△ABC中,∠ACB=90°,∠BAC=60°,AB=8,PC⊥平面ABC,PC=4,M是AB上一点,则PM的最小值为__________参考答案:14. 不等式x2﹣ax﹣b<0的解集是(2,3),则不等式bx2﹣ax﹣1>0的解集是 .参考答案:(﹣,﹣)【考点】一元二次不等式的应用.【专题】计算题.【分析】根据不等式x2﹣ax﹣b<0的解为2<x<3,得到一元二次方程x2﹣ax﹣b=0的根为x1=2,x2=3,利用根据根与系数的关系可得a=5,b=﹣6,因此不等式bx2﹣ax﹣1>0即不等式﹣6x2﹣5x﹣1>0,解之即得﹣<x<﹣,所示解集为(﹣,﹣).【解答】解:∵不等式x2﹣ax﹣b<0的解为2<x<3,∴一元二次方程x2﹣ax﹣b=0的根为x1=2,x2=3,根据根与系数的关系可得:,所以a=5,b=﹣6;不等式bx2﹣ax﹣1>0即不等式﹣6x2﹣5x﹣1>0,整理,得6x2+5x+1<0,即(2x+1)(3x+1)<0,解之得﹣<x<﹣∴不等式bx2﹣ax﹣1>0的解集是(﹣,﹣)故答案为:(﹣,﹣)【点评】本题给出含有字母参数的一元二次不等式的解集,求参数的值并解另一个一元二次不等式的解集,着重考查了一元二次不等式的解法、一元二次方程根与系数的关系等知识点,属于基础题.15. 某同学在最近的五次模拟考试中,其数学成绩的茎叶图如图所示,则该同学这五次数学成绩的方差是______.参考答案:30.8.【分析】写出茎叶图中的5个数据,计算均值后再计算方差.【详解】五个数据分别是:110,114,119,121,126,其平均值为,方差为故答案为:30.8【点睛】本题考查茎叶图,考查方差的计算.读懂茎叶图是解题基础.16. 若在区间[﹣5,5]内任取一个实数a,则使直线x+y+a=0与圆(x﹣1)2+(y+2)2=2有公共点的概率为 .参考答案:考点: 几何概型.专题: 计算题;概率与统计.分析: 利用圆心到直线的距离小于等于半径可得到直线与圆有公共点,可求出满足条件的a,最后根据几何概型的概率公式可求出所求.解答: 解:∵直线x+y+a=0与圆(x﹣1)2+(y+2)2=2有公共点,∴≤,解得﹣1≤a≤3,∴在区间[﹣5,5]内任取一个实数a,使直线x+y+a=0与圆(x﹣1)2+(y+2)2=2有公共点的概率为=故答案为:.点评: 本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题.17. 某地区为了解70岁~80岁的老人的日平均睡眠时间(单位:h),随机选择了50位老人进行调查,下表是这50位老人睡眠时间的频率分布表:序号i分组 (睡眠时间)组中值(Gi)频数(人数)频率(Fi) 14,5)4.560.1225,6)5.5100.2036,7)6.5200.4047,8)7.5100.2058,98.540.08在上述统计数据的分析中一部分计算见算法流程图,则输出的S的值为________.参考答案:6.42三、 解答题:本大题共5小题,共72分。
解答应写出文字说明,证明过程或演算步骤18. 等差数列{an}中,a2=4,a4+a7=15.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=2+n,求b1+b2+b3+…+b10的值.参考答案:【考点】等差数列的性质.【分析】(Ⅰ)建立方程组求出首项与公差,即可求数列{an}的通项公式;(Ⅱ)bn=2+n=2n+n,利用分组求和求b1+b2+b3+…+b10的值.【解答】解:(Ⅰ)设公差为d,则,解得,所以an=3+(n﹣1)=n+2;(Ⅱ)bn=2+n=2n+n,所以b1+b2+b3+…+b10=(2+1)+(22+2)+…+=(2+22+…+210)+(1+2+…+10)=+=2101.19. 如图已知正四棱柱ABCD----A1B1C1D1,AB=1,AA1=2,点E为CC1的中点,点F为BD1的中点1)证明:EF⊥平面;(2)求点A1到平面BDE的距离;(3)求BD1与平面BDE所成的角的余弦值.参考答案:(1) 以D为原点,DA、DC、AA1所在直线 为X、Y、Z轴建立空间直角坐标系.D (0,0,0),B(1,1,0)D1(0,0,2),E(0,1,1),F(,,1) ∴→DB=(1,1,0),=(0,0,2), x →EF=(,-,0) 由 →DB·→EF=0,·→EF=0,得,EF⊥DB,EF⊥DD1 ∴EF⊥面D1DB1----------------------------------------------------(2) 设=(x,y,z)是平面BDE的法向量,→DB=(1,1,0),→DE =(0,1,1)由⊥→DB, ⊥→DE得 即∴取y=1,=(-1,1,-1),由(2)知点到平面BDE的距离为 =----20. 已知双曲线与椭圆=1有公共焦点F1,F2,它们的离心率之和为2.(1)求双曲线的标准方程;(2)设P是双曲线与椭圆的一个交点,求cos∠F1PF2.参考答案:【考点】双曲线的简单性质.【分析】(1)由于椭圆焦点为F(0,±4),离心率为e=,可得双曲线的离心率为2,结合双曲线与椭圆=1有公共焦点F1,F2,求出a,b,c.最后写出双曲线的标准方程;(2)求出|PF1|=7,|PF2|=3,|F1F2|=8,利用余弦定理,即可求cos∠F1PF2.【解答】解:(1)椭圆=1的焦点为(0,±4),离心率为e=.∵双曲线与椭圆的离心率之和为2,∴双曲线的离心率为2,∴=2∵双曲线与椭圆=1有公共焦点F1,F2,∴c=4,∴a=2,b=,∴双曲线的方程是;(2)由题意,|PF1|+|PF2|=10,|PF1|﹣|PF2|=4∴|PF1|=7,|PF2|=3,∵|F1F2|=8,∴cos∠F1PF2==﹣.21. 某学校团委组织了“文明出行,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(单位:分)整理后,得到如下频率分布直方图(其中分组区间为[40,50),[50,60),…,[90,100]),(1)求成绩在[70,80)的频率,并补全此频率分布直方图;(2)求这次考试平均分的估计值;(3)若从成绩在[40,50)和[90,100]的学生中任选两人,求他们的成绩在同一分组区间的概率.参考答案:【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(1)利用频率分布直方图的意义可得:第四小组的频率=1﹣(0.005+0.015+0.020+0.030+0.005)×10.(2)利用频率分布直方图的意义可得:平均数=(45×0.005+55×0.015+65×0.020+75×0.025+85×0.030+95×0.005)×10.(3)[40,50)与[90.100]的人数分别是3和3,所以从成绩是[40,50)与[90,100]的学生中选两人,将[40,50]分数段的6人编号为A1,A2,A3,将[90,100]分数段的3人编号为B1,B2,B3,从中任取两人,可得基本事件构成集合Ω共有36个,其中,在同一分数段内的事件所含基本事件为6个,利用古典概率计算公式即可得出.【解答】解:(1)第四小组的频率=1﹣(0.005+0.015+0.020+0.030+0.005)×10=0.25.(2)依题意可得:平均数=(45×0.005+55×0.015+65×0.020+75×0.025+85×0.030+95×0.005)×10=72.5,(3)[40,50)与[90,100]的人数分别是3和3,所以从成绩是[40,50)与[90,100]的学生中选两人,将[40,50]分数段的6人编号为A1,A2,A3,将[90,100]分数段的3人编号为B1,B2,B3,从中任取两人,则基本事件构成集合Ω={(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,B3),(A2,A3),(A2,B1),(A2,B2),(A2,B3),(A3,B1),(A3,B2),(A3,B3),(B1,B2),(B1,B3),(B2,B3)}共有15个,其中,在同一分数段内的事件所含基本事件为(A1,A2),(A1,A3),(A2,A3),(B1,B2),(B1,B3),(B2,B3)共6个,故概率P==.【点评】。






![河南新冠肺炎文件-豫建科[2020]63号+豫建科〔2019〕282号](http://img.jinchutou.com/static_www/Images/s.gif)





