好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2025年同步资源初中数学第7章 锐角三角函数测试卷(3).docx

22页
  • 卖家[上传人]:学****
  • 文档编号:596380270
  • 上传时间:2025-01-04
  • 文档格式:DOCX
  • 文档大小:285.79KB
  • / 22 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 锐角三角函数测试卷(3)一、选择题1.如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3,则cosB的值是(  )A. B. C. D. 2.如果α是锐角,且,那么cos(90°﹣α)的值为(  )A. B. C. D. 3.已知:在Rt△ABC中,∠C=90°,sinA=,则cosB的值为(  )A. B. C. D. 4.在△ABC中,若tanA=1,sinB=,你认为最确切的判断是(  )A.△ABC是等腰三角形 B.△ABC是等腰直角三角形C.△ABC是直角三角形 D.△ABC是一般锐角三角形 5.在△ABC中,若|sinA﹣|+(﹣cosB)2=0,∠A,∠B都是锐角,则∠C的度数是(  )A.75° B.90° C.105° D.120° 6.如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)(  )A. B. C. D.h•cosα 7.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是(  )A.5米 B.6米 C.6.5米 D.12米 8.如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平地面A处安置测倾器测得楼房CD顶部点D的仰角为45°,向前走20米到达A′处,测得点D的仰角为67.5°,已知测倾器AB的高度为1.6米,则楼房CD的高度约为(结果精确到0.1米,≈1.414)(  )A.34.14米 B.34.1米 C.35.7米 D.35.74米 9.如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为(  )(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A.5.1米 B.6.3米 C.7.1米 D.9.2米二、填空题10.若是二次函数,则m的值是  . 11.在Rt△ABC中,∠C=90°,AB=2,BC=,则sin=___________. 12.如图,BC是一条河的直线河岸,点A是河岸BC对岸上的一点,AB⊥BC于B,站在河岸C的C处测得∠BCA=50°,BC=10m,则桥长AB=   m(用计算器计算,结果精确到0.1米) 13.如图,在直角△BAD中,延长斜边BD到点C,使DC=BD,连接AC,若tanB=,则tan∠CAD的值  . 14.如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40km,仰角是30°,n秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是  km. 三、解答题15.计算:tan260°﹣2sin30°﹣cos45°. 16.计算:+()﹣1﹣4cos45°﹣()0. 17.如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,求大厅的距离AC的长.(结果精确到0.1米)(参考数据:sin31°=0.515,cos31°=0.857,tan31°=0.60) 18.如图,信号塔PQ座落在坡度i=1:2的山坡上,其正前方直立着一警示牌.当太阳光线与水平线成60°角时,测得信号塔PQ落在斜坡上的影子QN长为2米,落在警示牌上的影子MN长为3米,求信号塔PQ的高.(结果不取近似值) 19.如图,某人为了测量小山顶上的塔ED的高,他在山下的点A处测得塔尖点D的仰角为45°,再沿AC方向前进60m到达山脚点B,测得塔尖点D的仰角为60°,塔底点E的仰角为30°,求塔ED的高度.结果保留根号) 20.耸立在临清市城北大运河东岸的舍利宝塔,是“运河四大名塔”之一(如图1).数学兴趣小组的小亮同学在塔上观景点P处,利用测角仪测得运河两岸上的A,B两点的俯角分别为17.9°,22°,并测得塔底点C到点B的距离为142米(A、B、C在同一直线上,如图2),求运河两岸上的A、B两点的距离(精确到1米).(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin17.9°≈0.31,cos17.9°≈0.95,tan17.9°≈0.32) 21.如图,为了测得一棵树的高度AB,小明在D处用高为1m的测角仪CD,测得树顶A的仰角为45°,再向树方向前进10m,又测得树顶A的仰角为60°,求这棵树的高度AB.答案1.如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3,则cosB的值是(  )A. B. C. D.【考点】T1:锐角三角函数的定义. 【专题】选择题【难度】易【分析】根据余弦的定义解答即可.【解答】解:在Rt△ABC中,BC=3,AB=5,∴cosB==,故选:A.【点评】本题考查的是锐角三角函数的定义,掌握锐角A的邻边a与斜边c的比叫做∠A的余弦是解题的关键. 2.如果α是锐角,且,那么cos(90°﹣α)的值为(  )A. B. C. D.【考点】T3:同角三角函数的关系. 【专题】选择题【难度】易【分析】根据互为余角三角函数关系,解答即可.【解答】解:∵α为锐角,,∴cos(90°﹣α)=sinα=.故选B.【点评】本题考查了互为余角的三角函数值,熟记三角函数关系式,是正确解答的基础. 3.已知:在Rt△ABC中,∠C=90°,sinA=,则cosB的值为(  )A. B. C. D.【考点】T4:互余两角三角函数的关系. 【专题】选择题【难度】易【分析】根据一个角的余弦等于它余角的正弦,可得答案.【解答】解:由在Rt△ABC中,∠C=90°,得∠A+∠B=90°,cosB=sinA=,故选:D.【点评】本题考查了互余两角三角函数关系,利用一个角的余弦等于它余角的正弦是解题关键. 4.在△ABC中,若tanA=1,sinB=,你认为最确切的判断是(  )A.△ABC是等腰三角形 B.△ABC是等腰直角三角形C.△ABC是直角三角形 D.△ABC是一般锐角三角形【考点】T5:特殊角的三角函数值.【专题】选择题 【难度】易【分析】先根据特殊角的三角函数值求出∠A,∠B的值,再根据三角形内角和定理求出∠C即可判断.【解答】解:∵tanA=1,sinB=,∴∠A=45°,∠B=45°.又∵三角形内角和为180°,∴∠C=90°.∴△ABC是等腰直角三角形.故选B.【点评】解答此题的关键是熟记特殊角的三角函数值,三角形内角和定理及等腰三角形的判定. 5.在△ABC中,若|sinA﹣|+(﹣cosB)2=0,∠A,∠B都是锐角,则∠C的度数是(  )A.75° B.90° C.105° D.120°【考点】T5:特殊角的三角函数值;16:非负数的性质:绝对值;1F:非负数的性质:偶次方. 【专题】选择题【难度】易【分析】本题可根据非负数的性质“两个非负数相加和为0,这两个非负数的值都为0.”分别求出∠A、∠B的值.然后用三角形内角和定理即可求出∠C的值.【解答】解:∵|sinA﹣|=0,(﹣cosB)2=0,∴sinA﹣=0,﹣cosB=0,∴sinA=,=cosB,∴∠A=45°,∠B=30°,∴∠C=180°﹣∠A﹣∠B=105°.故选C.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握二次根式、绝对值、非负数等考点的运算. 6.如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)(  )A. B. C. D.h•cosα【考点】T8:解直角三角形的应用. 【专题】选择题【难度】易【分析】根据同角的余角相等得∠CAD=∠BCD,由os∠BCD=知BC==.【解答】解:∵∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,∴∠CAD=∠BCD,在Rt△BCD中,∵cos∠BCD=,∴BC==,故选:B.【点评】本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键. 7.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是(  )A.5米 B.6米 C.6.5米 D.12米【考点】T9:解直角三角形的应用﹣坡度坡角问题. 【专题】选择题【难度】易【分析】在Rt△ABC中,先求出AB,再利用勾股定理求出BC即可.【解答】解:如图AC=13,作CB⊥AB,∵cosα==,∴AB=12,∴BC==132﹣122=5,∴小车上升的高度是5m.故选A.【点评】此题主要考查解直角三角形,锐角三角函数,勾股定理等知识,解题的关键是学会构造直角三角形解决问题,属于中考常考题型. 8.如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平地面A处安置测倾器测得楼房CD顶部点D的仰角为45°,向前走20米到达A′处,测得点D的仰角为67.5°,已知测倾器AB的高度为1.6米,则楼房CD的高度约为(结果精确到0.1米,≈1.414)(  )A.34.14米 B.34.1米 C.35.7米 D.35.74米【考点】TA:解直角三角形的应用﹣仰角俯角问题. 【专题】选择题【难度】易【分析】过B作BF⊥CD于F,于是得到AB=A′B′=CF=1.6米,解直角三角形即可得到结论.【解答】解:过B作BF⊥CD于F,∴AB=A′B′=CF=1.6米,在Rt△DFB′中,B′F=,在Rt△DFB中,BF=DF,∵BB′=AA′=20,∴BF﹣B′F=DF﹣=20,∴DF≈34.1米,∴CD=DF+CF=35.7米,答:楼房CD的高度约为35.7米,故选C.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形. 9.如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为(  )(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A.5.1米 B.6.3米 C.7.1米 D.9.2米【考点】TA:解直角三角形的应用﹣仰角俯角问题;T9:解直角三角形的应用﹣坡度坡角问题. 【专题】选择题【难度】易【分析】延长DE交AB延长线于点P,作CQ⊥AP,可得CE=PQ=2、CQ=PE,由i===可设CQ=4x、BQ=3x,根据BQ2+CQ2=BC2求得x的值,即可知DP=11,由AP==结合AB=AP﹣BQ﹣PQ可得答案.【解答】解:如图,延长DE交AB延长线于点P,作CQ⊥AP于点Q,∵CE∥AP,∴DP⊥AP,∴四边形CEPQ为矩形,∴CE=PQ=2,CQ=PE,∵i===,∴设CQ=4x、BQ=3x,由BQ2+CQ2=BC2可得(4x)2+(3x)2=102,解得:x=2或x=﹣2(舍),则CQ=PE=8,BQ=6,∴DP=DE+PE=11,在Rt△ADP中,∵AP==≈13.1,∴A。

      点击阅读更多内容
      相关文档
      三年级数学加减法口算专项练习题(每日一练共21份).docx 三年级数学加减法口算专项练习题(每日一练共33份).docx 三年级数学加减法口算专项练习题(每日一练共35份).docx 三年级数学加减法口算专项练习题(每日一练共34份).docx 三年级数学加减法口算专项练习题(每日一练共28份).docx 三年级数学加减法口算专项练习题(每日一练共30份).docx 三年级数学加减法口算专项练习题(每日一练共25份).docx 三年级数学加减法口算专项练习题(每日一练共26份).docx 三年级数学加减法口算专项练习题(每日一练共27份).docx 三年级数学加减法口算专项练习题(每日一练共17份).docx 三年级数学加减法口算专项练习题(每日一练共32份).docx 三年级数学加减法口算专项练习题(每日一练共24份).docx 三年级数学加减法口算专项练习题(每日一练共31份).docx 三年级数学加减法口算专项练习题(每日一练共20份).docx 三年级数学加减法口算专项练习题(每日一练共18份).docx 三年级数学加减法口算专项练习题(每日一练共22份).docx 三年级数学加减法口算专项练习题(每日一练共19份).docx 三年级数学加减法口算专项练习题(每日一练共23份).docx 三年级数学加减法口算专项练习题(每日一练共29份).docx 三年级数学加减法口算专项练习题(每日一练共15份).docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.