
苏教版二轮专题平面向量.doc
8页平 面 向 量【高考考情解读】 从近几年高考来看,平面向量有以下几个考查特点:1.向量的加法,主要考查运算法则、几何意义;平面向量的数量积、坐标运算、两向量平行与垂直的充要条件是命题的重点内容,主要考查运算能力和灵活运用知识的能力;试题常以填空题形式出现,难度中等偏下.2.平面向量与三角函数、解析几何相结合,以解答题形式呈现,难度中等.【知识梳理】1. 平面向量中的五个基本概念(1)零向量模的大小为0,方向是任意的,它与任意非零向量都共线,记为0.(2)长度等于1个单位长度的向量叫单位向量,a的单位向量为.(3)方向相同或相反的向量叫共线向量(平行向量).(4)如果直线l的斜率为k,则a=(1,k)是直线l的一个方向向量.(5)向量的投影:|b|cos〈a,b〉叫做向量b在向量a方向上的投影.2. 平面向量的两个重要定理(1)向量共线定理:向量a(a≠0)与b共线当且仅当存在唯一一个实数λ,使b=λa.(2)平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2,其中e1,e2是一组基底.3. 平面向量的两个充要条件:若两个非零向量a=(x1,y1),b=(x2,y2),则:(1)a∥b⇔a=λb⇔x1y2-x2y1=0.(2)a⊥b⇔a·b=0⇔x1x2+y1y2=0.4. 平面向量的三个性质(1)若a=(x,y),则|a|==.(2)若A(x1,y1),B(x2,y2),则||=.(3)若a=(x1,y1),b=(x2,y2),θ为a与b的夹角,则cos θ==.【考点探究】考点一 平面向量的概念及线性运算例1 (1)(2013·江苏)设D,E分别是△ABC的边AB,BC上的点,AD=AB,BE=BC.若=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为________.(2)△ABC的外接圆的圆心为O,半径为2,++=0且||=||,则向量在上的投影为________.解析 (1)如图,=+=+=+(-)=-+,则λ1=-,λ2=,λ1+λ2=.(2)由++=0,得+=.又O为△ABC外接圆的圆心,OB=OC,∴四边形ABOC为菱形,AO⊥BC.由||=||=2,知△AOC为等边三角形.故在上的投影为||cos∠ACB=2cos =. (1)在一般向量的线性运算中,只要把其中的向量当作字母,其运算就类似于代数中合并同类项的运算;有的问题采用坐标化解决更简单.(2)运用向量加减法解决几何问题时,要善于发现或构造三角形或平行四边形,使用三角形法则时要特别注意“首尾相接”.运用平行四边形法则时两个向量的起点必须重合. (1)已知△ABC和点M满足++=0.若存在实数m使得+=m成立,则m的值为________.(2)如图,平面内有三个向量,,,其中与的夹角为120°,与的夹角为30°,且||=||=1,||=2,若=λ+μ(λ,μ∈R),则λ+μ的值为________.解析 (1)∵++=0,∴点M是△ABC的重心.∴+=3,∴m=3.(2)方法一 如图,=1+1,|1|=2,|1|=||=4,∴=4+2.∴λ+μ=6.方法二 由=λ+μ,两边同乘,得2=λ·+0,∴λ=4.∴=4+μ,两边同乘,得·=4+μ·,即3=4+(-)μ.∴μ=2.∴λ+μ=6.方法三 以O为原点,OA为x轴建立直角坐标系,则A(1,0),C(2cos 30°,2sin 30°),B(cos 120°,sin 120°).即A(1,0),C(3,),B(-,).由=λ+μ得,∴.∴λ+μ=6.考点二 平面向量的数量积例2 (1)(2012·江苏)如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若·=,则·的值是________.(2)若a,b,c均为单位向量,且a·b=0,(a-c)·(b-c)≤0,则|a+b-c|的最大值为________.解析 (1)方法一 坐标法.以A为坐标原点,AB,AD所在直线为x轴,y轴建立平面直角坐标系,则A(0,0),B(,0),E(,1),F(x,2).故=(,0),=(x,2),=(,1),=(x-,2),∴·=(,0)·(x,2)=x.又·=,∴x=1.∴=(1-,2).∴·=(,1)·(1-,2)=-2+2=.方法二 用,表示,是关键.设=x,则=(x-1).·=·(+)=·(+x)=x2=2x,又∵·=,∴2x=,∴x=.∴=+=+.∴·=(+)·==2+2=×2+×4=.(2)方法一 由题意知a2=b2=c2=1,又a·b=0,∵(a-c)·(b-c)=a·b-a·c-b·c+c2≤0,∴a·c+b·c≥c2=1,∴|a+b-c|2=a2+b2+c2+2a·b-2a·c-2b·c=3-2(a·c+b·c)≤1,∴|a+b-c|≤1.方法二 设a=(1,0),b=(0,1),c=(x,y),则x2+y2=1,a-c=(1-x,-y),b-c=(-x,1-y),则(a-c)·(b-c)=(1-x)(-x)+(-y)(1-y)=x2+y2-x-y=1-x-y≤0,即x+y≥1.又a+b-c=(1-x,1-y),∴|a+b-c|===≤1. (1)涉及数量积和模的计算问题,通常有两种求解思路:①直接利用数量积的定义;②建立坐标系,通过坐标运算求解.(2)在利用数量积的定义计算时,要善于将相关向量分解为图形中模和夹角已知的向量进行计算.求平面向量的模时,常把模的平方转化为向量的平方. (1)(2013·山东)已知向量与的夹角为120°,且||=3,||=2.若A=λ+,且⊥,则实数λ的值为________.(2)(2013·重庆改编)在平面上,⊥,||=||=1,=+.若||<,则||的取值范围是________.答案 (1) (2)解析 (1)由⊥知·=0,即·=(λ+)·(-)=(λ-1)·-λA2+2=(λ-1)×3×2×-λ×9+4=0,解得λ=.(2)∵⊥,∴·=(-)·(-)=·-·-·+2=0,∴·-·-·=-2.∵=+.∴-=-+-,∴=+-.∵||=||=1,∴2=1+1+2+2(·-·-·)=2+2+2(-2)=2-2,∵||<,∴0≤||2<,∴0≤2-2<,∴<2≤2,即||∈.考点三 平面向量与三角函数的综合应用例3 已知向量a=(cos α,sin α),b=(cos x,sin x),c=(sin x+2sin α,cos x+2cos α),其中0<α












