
浙江省杭州市示范名校2025年高二数学第一学期期末统考模拟试题含解析.doc
16页浙江省杭州市示范名校2025年高二数学第一学期期末统考模拟试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.已知圆过点,,且圆心在轴上,则圆的方程是()A. B.C. D.2.已知点的坐标为(5,2),F为抛物线的焦点,若点在抛物线上移动,当取得最小值时,则点的坐标是A.(1,) B.C. D.3.已知一个乒乓球从米高的高度自由落下,每次落下后反弹的高度是原来高度的倍,则当它第8次着地时,经过的总路程是( )A. B.C. D.4.若离散型随机变量的所有可能取值为1,2,3,…,n,且取每一个值的概率相同,若,则n的值为( )A.4 B.6C.9 D.105.如图,棱长为1的正方体中,为线段上的动点,则下列结论错误的是A.B.平面平面C.的最大值为D.的最小值为6.在中,a,b,c分别为角A,B,C的对边,已知,,的面积为,则( )A. B.C. D.7.已知函数,则()A.3 B.C. D.8.已知奇函数是定义在R上的可导函数,的导函数为,当时,有,则不等式的解集为()A. B.C. D.9.已知是椭圆与双曲线的公共焦点,P是它们的一个公共点,且,线段的垂直平分线过,若椭圆的离心率为,双曲线的离心率为,则的最小值为( )A. B.3C.6 D.10.为了了解1200名学生对学校某项教改实验的意见,打算从中抽取一个容量为40的样本,采用系统抽样方法,则分段的间隔为()A.40 B.30C.20 D.1211.抛物线y2=4x的焦点坐标是A.(0,2) B.(0,1)C.(2,0) D.(1,0)12.已知抛物线的焦点为F,点A在抛物线上,直线FA与抛物线的准线交于点M,O为坐标原点.若,且,则()A.1 B.2C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。
13.已知数列中,,且数列为等差数列,则_____________.14.已知数列满足,则__________.15.已知平面的一个法向量为,点为内一点,则点到平面的距离为___________.16.已知,若三个数成等差数列,则_________;若三个数成等比数列,则__________三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)已知函数f(x)+alnx,实数a>0(1)当a=2时,求函数f(x)在x=1处的切线方程;(2)讨论函数f(x)在区间(0,10)上的单调性和极值情况;(3)若存在x∈(0,+∞),使得关于x的不等式f(x)<2+a2x成立,求实数a的取值范围18.(12分)已知是等差数列,,.(1)求的通项公式;(2)若数列是公比为的等比数列,,求数列的前项和.19.(12分)已知各项均为正数的等差数列中,,且,,构成等比数列的前三项(1)求数列,的通项公式;(2)求数列的前项和20.(12分)如图,在三棱锥P-ABC中,△ABC是以AC为底的等腰直角三角形,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且,求平面MAP与平面CAP所成角的大小.21.(12分)在平面直角坐标系中,已知点,,点满足,记点的轨迹为.(1)求的方程;(2)已知,是经过圆上一点且与相切的两条直线,斜率分别为,,直线的斜率为,求证:为定值.22.(10分)为了了解高二段1000名学生一周课外活动情况,随机抽取了若干学生的一周课外活动时间,时间全部介于10分钟与110分钟之间,将课外活动时间按如下方式分成五组:第一组,第二组,…,第五组.按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右前3个组的频率之比为3∶8∶19,且第二组的频数为8(1)求第一组数据的频率并计算调查中随机抽取了多少名学生的一周课外活动时间;(2)求这组数据的平均数参考答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1、B【解析】根据圆心在轴上,设出圆的方程,把点,的坐标代入圆的方程即可求出答案.【详解】因为圆的圆心在轴上,所以设圆的方程为,因为点,在圆上,所以,解得,所以圆的方程是.故选:B.2、D【解析】过作准线的垂线,垂足为,则,当且仅当三点共线时等号成立,此时,故,所以,选D3、C【解析】根据等比数列的求和公式求解即可.【详解】从第1次着地到第2次着地经过的路程为 ,第2次着地到第3次着地经过的路程为,组成以为首项,公比为的等比数列,所以第1次着地到第8次着地经过的路程为,所以经过的总路程是.故答案为:C.4、D【解析】根据分布列即可求出【详解】因为,所以故选:D5、C【解析】∵,,∴面,面,∴,A正确;∵平面即为平面,平面即为平面,且平面,∴平面平面,∴平面平面,∴B正确;当 时,为钝角,∴C错;将面与面沿展成平面图形,线段即为的最小值,在中,,利用余弦定理解三角形得,即,∴D正确,故选C考点:立体几何中的动态问题【思路点睛】立体几何问题的求解策略是通过降维,转化为平面几何问题,具体方法表现为:求空间角、距离,归到三角形中求解;2.对于球的内接外切问题,作适当的截面,既要能反映出位置关系,又要反映出数量关系;求曲面上两点之间的最短距离,通过化曲为直转化为同一平面上两点间的距离6、C【解析】利用面积公式,求出,进而求出,利用余弦定理求出,再利用正弦定理求出【详解】由面积公式得:,因为的面积为,所以,求得:因,所以由余弦定理得:所以由正弦定理得:,即,解得:故选:C7、B【解析】由导数运算法则求出导发函数,然后可得导数值【详解】由题意,所以故选:B8、B【解析】根据给定的不等式构造函数,再探讨函数的性质,借助性质解不等式作答.【详解】依题意,令,因是R上的奇函数,则,即是R上的奇函数,当时,,则有在单调递增,又函数在R上连续,因此,函数在R上单调递增,不等式,于是得,解得,所以原不等式的解集是.故选:B9、C【解析】利用椭圆和双曲线的性质,用椭圆双曲线的焦距长轴长表示,再利用均值不等式得到答案【详解】设椭圆长轴,双曲线实轴,由题意可知:,又,,两式相减,可得:,,.,,当且仅当时取等号,的最小值为6,故选:C【点睛】本题考查了椭圆双曲线的性质,用椭圆双曲线的焦距长轴长表示是解题的关键,意在考查学生的计算能力10、B【解析】根据系统抽样的概念,以及抽样距的求法,可得结果.【详解】由总数为1200,样本容量为40,所以抽样距为:故选:B【点睛】本题考查系统抽样的概念,属基础题.11、D【解析】的焦点坐标为,故选D.【考点】抛物线的性质【名师点睛】本题考查抛物线的定义.解析几何是中学数学的一个重要分支,圆锥曲线是解析几何的重要内容,它们的定义、标准方程、简单几何性质是我们要重点掌握的内容,一定要熟记掌握12、D【解析】设,由和在抛物线上,求出和,利用求出p.【详解】过A作AP垂直x轴与P.抛物线的焦点为,准线方程为.设,因为,所以,解得:.因为在抛物线上,则.所以,即,解得:.故选:D二、填空题:本题共4小题,每小题5分,共20分。
13、【解析】由题意得: 考点:等差数列通项14、【解析】由题,用累乘法求得通项公式:,则,通过裂项求和即可得出结果.【详解】由题,所以累乘法求通项公式:,所以,经验证时,符合.所以,则.故答案为:15、1【解析】利用空间向量求点到平面的距离即可.【详解】,,∴则点P到平面的距离为.故答案为:1.16、 ①.4 ②.【解析】由等差中项与等比中项计算即可.【详解】若a,b,c三个数成等差数列.所以.若a,b,c三个数成等比数列.所以故答案为:4,.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17、(1)4x﹣y+2=0(2)答案见解析(3)(0,2)∪(2,+∞)【解析】(1)求出f(x)的导数,可得切线的斜率和切点坐标,由直线的点斜式方程可得所求切线的方程;(2)求得f(x)的导数,分a、0<a两种情况讨论求出答案即可;(3)由题意可得存在x∈(0,+∞),使得不等式成立,令,x>0,求得其最小值,再把最小值看成关于的函数,结合其单调性和极值可得答案【小问1详解】函数f(x)的定义域为(0,+∞),当a=2时,,导数为4,可得f(x)在x=1处的切线的斜率为4,又f(1)=6,所以f(x)在x=1处的切线的方程为y﹣6=4(x﹣1),即4x﹣y+2=0;【小问2详解】f(x)的导数为f′(x)a2,x>0,令f′(x)=0,可得x(舍去),①当010,即a时,当0<x时,f′(x)<0,f(x)递减;当x<10时,f′(x)>0,f(x)递增所以f(x)在(0,)上递减,在(,10)上递增,f(x)在x处取得极小值,无极大值;②当10即0<a时,f′(x)<0,f(x)在(0,10)上递减,无极值综上可得,当a时,f(x)在(0,)单调递减,在(,10)上单调递增,f(x)在x时取得极小值,无极大值当0<a时,f(x)在区间(0,10)上递减,无极值;【小问3详解】存在x∈(0,+∞),使得不等式f(x)<2+a2x成立等价为存在x∈(0,+∞),使得不等式alnx﹣2<0成立令,x>0,g′(x),因为a>0,可得当0<x时,g′(x)<0,g(x)递减;当x时,g′(x)>0,g(x)递增,所以当x时,g(x)取得极小值,且为最小值,由题意可得,令,,令h′(x)=0,可得x=2,当x∈(0,2)时,h′(x)>0,h(x)递增;当x∈(2,+∞)时,h′(x)<0,h(x)递减所以当x=2时,h(x)取得极大值,且为最大值h(2)=0所以满足的实数a的取值范围是(0,2)∪(2,+∞)18、(1)(2)【解析】(1)由题意得解方程组求出,从而可求出数列的通项公式,(2)因为是公比为的等比数列,又,,所以,从而可得,然后利用分组求和法求解即可【小问1详解】设等差数列的公差为.由题意得解得,.所以.【小问2详解】因为是公比为的等比数列,又,,所以,所以.所以.19、(1);(2)【解析】(1)设等差数列公差为d,利用基本量代换列方程组求出的通项公式,进而求出的首项和公比,即可求出的通项公式;(2)利用分组求和法直接求和.【小问1详解】设等差数列的公差为d,则由已知得:,即,又,解得或(舍去),所以.,又,,,;【小问2详解】,.20、(1)证明见解析。












