好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2013年高考文科数学湖南卷试题与答案word解析版.doc

3页
  • 卖家[上传人]:工****
  • 文档编号:547869316
  • 上传时间:2023-02-12
  • 文档格式:DOC
  • 文档大小:128.50KB
  • / 3 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 2013年普通高等学校夏季招生全国统一考试数学文史类(湖南卷)19.(2013湖南,文19)(本小题满分13分)设Sn为数列{an}的前n项和,已知a1≠0,2an-a1=S1·Sn,n∈N*.(1)求a1,a2,并求数列{an}的通项公式;(2)求数列{nan}的前n项和.19.解:(1)令n=1,得2a1-a1=a12,即a1=a12.因为a1≠0,所以a1=1.令n=2,得2a2-1=S2=1+a2.解得a2=2.当n≥2时,由2an-1=Sn,2an-1-1=Sn-1两式相减得2an-2an-1=an.即an=2an-1.于是数列{an}是首项为1,公比为2的等比数列.因此,an=2n-1.所以数列{an}的通项公式为an=2n-1.(2)由(1)知,nan=n·2n-1.记数列{n·2n-1}的前n项和为Bn,于是Bn=1+2×2+3×22+…+n×2n-1,①2Bn=1×2+2×22+3×23+…+n×2n.②①-②得-Bn=1+2+22+…+2n-1-n·2n=2n-1-n·2n.从而Bn=1+(n-1)·2n.20.(2013湖南,文20)(本小题满分13分)已知F1,F2分别是椭圆E:+y2=1的左、右焦点,F1,F2关于直线x+y-2=0的对称点是圆C的一条直径的两个端点.(1)求圆C的方程;(2)设过点F2的直线l被椭圆E和圆C所截得的弦长分别为a,b,当ab最大时,求直线l的方程.20.解:(1)由题设知,F1,F2的坐标分别为(-2,0),(2,0),圆C的半径为2,圆心为原点O关于直线x+y-2=0的对称点.设圆心的坐标为(x0,y0),由解得所以圆C的方程为(x-2)2+(y-2)2=4.(2)由题意,可设直线l的方程为x=my+2,则圆心到直线l的距离.所以.由得(m2+5)y2+4my-1=0.设l与E的两个交点坐标分别为(x1,y1),(x2,y2),则y1+y2=,y1y2=.于是====.从而ab==≤.当且仅当,即时等号成立.故当m=±时,ab最大,此时,直线l的方程为x=y+2或x=y+2,即x-y-2=0,或x+y-2=0.21.(2013湖南,文21)(本小题满分13分)已知函数f(x)=ex.(1)求f(x)的单调区间;(2)证明:当f(x1)=f(x2)(x1≠x2)时,x1+x2<0.21.(2013湖南,文21)(本小题满分13分)已知函数f(x)=ex.(1)求f(x)的单调区间;(2)证明:当f(x1)=f(x2)(x1≠x2)时,x1+x2<0.(1)解:函数f(x)的定义域为(-∞,+∞).f′(x)=ex+ex==.当x<0时,f′(x)>0;当x>0时,f′(x)<0.所以f(x)的单调递增区间为(-∞,0),单调递减区间为(0,+∞).(2)证明:当x<1时,由于>0,ex>0,故f(x)>0;同理,当x>1时,f(x)<0.当f(x1)=f(x2)(x1≠x2)时,不妨设x1<x2,由(1)知x1∈(-∞,0),x2∈(0,1).下面证明:x∈(0,1),f(x)<f(-x),即证.此不等式等价于(1-x)ex-<0.令g(x)=(1-x)ex-,则g′(x)=-xe-x(e2x-1).当x∈(0,1)时,g′(x)<0,g(x)单调递减,从而g(x)<g(0)=0.即(1-x)ex-<0.所以x∈(0,1),f(x)<f(-x).而x2∈(0,1),所以f(x2)<f(-x2),从而f(x1)<f(-x2).由于x1,-x2∈(-∞,0),f(x)在(-∞,0)上单调递增,所以x1<-x2,即x1+x2<0.。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.