
辽宁省2022年中考数学卷真题分题型分层汇编-02选择题(基础题).pdf
19页辽宁省2022年中考数学卷真题分题型分层汇编-0 2选择题( 基础题)一、动点问题的函数图象( 共 1 小题)1. ( 2022•鞍山)如图,在 中,N 4 8= 9 0° , N4 = 30° , C D L A B ,垂足为点I) ,动点〃从点A出 发 沿方 向 以 炳 an/s的速度匀速运动到点B ,同时动点/V 从 点 C 出发沿射线比1 方向以 I c W s 的速度匀速运动.当点材停止运动时,点 N 也随之停止,连接也Y 设运动时间为ts, △也叨的面积 为 则 下 列 图 象 能 大 致 反 映 S 与 f 之间函数关系的是( )A M D B9 c ts /c m22、二、一次函数的图象( 共 1 小题)2. ( 2022•沈阳)在平面直角坐标系中,一次函数y=- 91 的图象是( )第1页 共1 9页Xv三、反比例函数与一次函数的交点问题( 共1小题)3. ( 2022•朝阳)如图,正比例函数尸ax « 为常数,且aWO)和反比例函数y=K ( A为常数,且2 0)的图象相交于/ ( - 2 ,加 和8两点,则不等式ax>K的解集为( )XC. -2 ,数 为 ( )AC. 7 0° D. 110°, A B = A C , ZB A C = 24 ° , 延长回到点〃,使 加 力 ,连接力〃C. 4 9 ° D. 5 1°等边三角形Z %的顶点C 在直线b 上,Z 2= 4 0° , 则N 1 的度第 3 页 共 1 9 页BA . 8 0° B . 7 0° C. 6 0° D. 5 0°八、直角三角形斜边上的中线( 共 1 小题)9 . ( 2022•大连)如图,在△ ? 1比■中,/4 2= 9 0° . 分别以点4和 点 C 为圆心,大于工4 的长为半2径作弧,两弧相交于M N 两点,作直线,KM 直线助V 与 4 6 相交于点〃,连接切,若 4A3 , 则切的长是九、三角形中位线定理( 共 1 小题)10. ( 2022•沈阳) 如图,在口△力回中,/4 = 30° , 点〃、 £分 别 是 直 角 边 6 c 的中点,连接D E ,则/以力的度数是( )十、多边形内角与外角( 共 1 小题)11. ( 2022•大连)六边形内角和的度数是( )A . 18 0° B . 36 0° C. 5 4 0° I) . 7 20°十一、平行四边形的性质( 共 1 小题)12. ( 2022•朝阳)将一个三角尺按如图所示的方式放置在一张平行四边形的纸片上,4 E FG= 90° ,NE GF= 6 0° , 环' = 5 0° , 则/笈笛的度数为( )十二、圆周角定理( 共 1 小题)13. ( 2022•朝阳)如图,在。 中,点/是前的中点,, 则/ / 加 的 度 数 是 ( )第 4 页 共 1 9 页十三、命题与定理( 共 1 小题)14 . ( 2022•盘锦)下列命题不正确的是( )A. 经过直线外一点,有且只有一条直线与这条直线平行B. 负数的立方根是负数C . 对角线互相垂直的四边形是菱形D . 五边形的外角和是36 0°十四、关于x 轴、y 轴对称的点的坐标( 共 1 小题)15 . ( 2022•沈阳)在平面直角坐标系中,点 4 ( 2, 3)关于y 轴对称的点的坐标是( )A . ( - 2, - 3) B . ( - 2, 3) C. ( 2, - 3) D. ( - 3, - 2)十五、中心对称图形( 共 2 小题)16 . ( 2022•辽宁)下列图形中,既是轴对称图形又是中心对称图形的是( )17 . ( 2022•丹东)如图,在四边形4 ? ① 中 ,A B //C D , A B = C D ,对角线〃' 与劭交于点 ,点 £ 是 相的中点,连 接 阳 △/班的周长为12面,则下列结论错误的是( )A . O E //A B第 5 页 共 1 9 页B .四边形1腼是中心对称图形C. △£ 阳的周长等于3 MD.若N 4 比1= 9 0° , 则四边形力腼是轴对称图形十六、简单几何体的三视图( 共 1 小题)18 . ( 2022•大连)下列立体图形中,主视图是圆的是( )十七、简单组合体的三视图( 共 5 小题)19 . ( 2022•朝阳)如图所示的几何体是由5个大小相同的小立方块搭成的,它的主视图是( )R 主视方向20. ( 2022•鞍山)如图所示的几何体是由4 个大小相同的小正方体搭成的,它的左视图是( )第 6 页 共 1 9 页22. ( 2022•沈阳)如图是由4个相同的小立方体搭成的几何体,这个几何体的主视图是()23. ( 2022•辽宁) 如图是由6个完全相同的小正方体组成的几何体, 这个几何体的主视图是( )第7页 共1 9页参考答案与试题解析一、动点问题的函数图象( 共 1小题)1. ( 2022•鞍山)如图,在 中,N4 8 =90° , N4=30° , CD LA B ,垂足为点I),动点〃从点A出 发 沿方 向 以 炳an/s的速度匀速运动到点B ,同时动点/V从 点C出发沿射线比1方向以IcW s的速度匀速运动. 当点材停止运动时,点N也随之停止,连接也Y设运动时间为ts, △也叨的面积 为 则 下 列 图 象 能 大 致 反 映S与f之间函数关系的是( )【 解答】解:8 =90° , N/=30° ,轴 =4如 ,A Z ^5= 60° , BC=^AB=2如 ,A C = MBC=6,":CD LAB,:.CD=^AC=2,, AD=MCD=3M,BD=看BC=M,第8页 共1 9页,当 "在 /〃 上 时 ,0 W K 3 ,MD^AD- AM=3如 -M t, DgDCCN=3+1,:.S =ND*D 4L ( 3A/3 - V 3 f )( 3+i)2 2= 一 旦 + 亚2 2当 "在 即 上 时 ,3< t W 4 ,MD=-AM- AD=y/3 t -3禽 ,S= L »DN= L2 2( V 3 t - 3 7 3 )( 3+t)_ V 3 f2 _ 973~ 2故选:B.二、一次函数的图象( 共1小题)2. ( 2022•沈阳)在平面直角坐标系中,一次 函 数 尸 - 户1的图象是()vv【 解答】解:一 次 函 数 尸-x + 1中,令x = 0 ,则 尸1;令尸则x = l ,工一次函数尸:-x + 1的图象经过点( 0, 1)和( 1, 0) ,,一次函数y=-户1的图象经过一、二、四象限,故选:C.三、反比例函数与一次函数的交点问题( 共1小题)3. ( 2022•朝阳)如图,正比例函数尸a /( a为常数,且a W O )和 反 比 例 函 数 尸 上( A为常数,且X2 0 )的图象相交于4( -2,加 和8两点,则不等式a x > K的解集为( )X第9页 共1 9页C. - 2c x < 0 或 x> 2 D . x < - 2 或 0c x < 2【 解答】解:• • •正比例函数尸a x ( a为常数,且a W O )和 反 比 例 函 数 尸 区 ( 在为常数,且 2 0 )的图X象相交于力(-2, ni)和8两点,: .B ( 2 ,-加 ,・ ・ ・不 等 式 区 的 解 集 为x V - 2或0< % < 2,x故选:D .四、二次函数的性质( 共1小题)4 . ( 2022•朝阳)如图,二次函数9 =数2+ -+。 《 为常数,且a W O )的图象过点( -1, 0) ,对称轴B. 3a + c > 0C. a a+ab ( 勿为任意实数)9D . - I V a V -三3【 解答】解:A .抛物线的对称轴在y轴右侧,则 的V 0 ,而 >0,故a bc V O ,不正确,不符合题意;B.函数的对称轴为直线x=- 且= 1 ,则6=-2a ,2a,・•从图象看,当 x = - 1 时,y = a- M c = 3a + c = 0,第1 0页 共1 9页故不正确,不符合题意;C. • . •当x = l 时,函数有最大值为y = a + H c ,.' .am+bnr^c^a+b+c ( 而为任意实数) ,am + bin及9 b,•? a W O ,/.am-^abm^a^ab ( 勿为任意实数)故不正确,不符合题意;D.; 一 旦 =1 , 故 b= - 2a ,2aV x = - 1, y = O , 故 a - H c = 0 ,♦ ・ = - 3a ,V 2< c < 3,: .2< - 3c ? < 3,故正确,符合题意;3故选:D .五、平行线的性质( 共 2 小题)5 . ( 2022•丹东)如图,直线人〃4 ,直 线 A与 /” A分别交于4 6两点,过点4作力入心,垂足为 C ,若N l = 5 2° , 则N2 的度数是( )A . 32° B. 38 ° C. 4 8 °D . 5 2°【 解答】解:• . •直线八〃4,N l = 5 2° ,: .ZA B C = Zl = 52° ,\' A C L 12,: .A A C B = ^° ,,/ 2 = 18 0° - NA B C - NA C B = 18Q° - 5 2° - 9 0° = 38 ° ,故选:B .6 . ( 2022•大连)如图,平行线 历,G ? 被直线旗所截,FG斗令4 E F D ,若 /£ 7 力 = 7 0° , 则/ £ ( / 的第1 1页 共1 9页度 数 是 ()【 解答】解:,: FG平■分4EFD, NEFD=70::. 4 G F g L /E F D =上 义 廿=35° ,2 2':AB//CD,:. NEGF= NGFD=35° .故选:A.六、等腰三角形的性质( 共1小题)7 . ( 2022♦鞍山)如图,在中,AB=AC, ZBAC=24° , 延长回到点〃,使 加 力 。 ,连 接4 9 ,则 的 度 数 ( )A . 3 9 ° B. 4 0 ° C . 4 9 ° D . 51 °【 解答】解 :•:AB=AC, ZBAC=24° ,:.4B = /A C B = 180 .♦;CD=AC, ZACB=78° , /A C B = 4肚4CAD,:.Z Z?= Z CAD= A z ACB= 39 ° .2故选:A.七、等边三角形的性质( 共1小题)8 . ( 2 0 2 2•鞍山)如图,直 线a 〃 6 ,等边三角形/ ■的 顶 点C在 直 线6上,N 2 = 4 0 ° ,则N1的度数 为 ( )第1 2页 共1 9页【 解答】解:・ ・ ・△/ 笈为等边三角形,力 =60° ,V ZJ+Z3+Z2 = 180° ,/.Z3=180° - 40° - 60° =80° ,■ : allb,/ .Z l = Z3=80° .故选:A .八、直角三角形斜边上的中线( 共 1小题)9. ( 2022•大连)如图,在%中,NA C B = 90° .分 别 以 点 / 和 点 ,为圆心,大于工4的长为半2径作弧,两弧相交于机N两点,作直线助V .直线版V与 46相交于点。 ,连接切,若 4 ? = 3 ,则切的长是【 解答】解:由已知可得,物 V是线段〃、 的垂直平分线,设" ' 与秘V的交点为E ,, .•/ / 终=9 0 °,助 V垂直平分力C,:.NA E D = NA C B = 9Q" , A E = C E ,: .E D //C B ,: .^\A E D ^/\A C B ,. A E A D• • -二 - ,A C A B•..-1 --A-D- ,2 A B第1 3页 共1 9页:.AD^^AB,2二点〃为46 的中点,♦.•45=3, Z/1G?=90° ,:.CD=^AB=\. 5,210. ( 2022•沈阳) 如图, 在 R t^4?C 中,N /=30° , 点 心 £1分别是直角边4C、 8C的中点, 连接应,则 的 度 数 是 ( )【 解答】解:在 RtZVla 1 中,N4=30° ,则/6 = 9 0 ° - N1=60° ,■:D、£分 别 是 边 8 的中点,. •.鹿是△ ? ! 比1的中位线,J.DE//AB,:./C E Q /4 6 0 ° ,故选:B.十、多边形内角与外角( 共 1 小题)11. ( 2022•大连)六边形内角和的度数是( )A. 180° B. 360° C. 540° D. 720°【 解答】解:六边形的内角和的度数是( 6 - 2) X 1800 =720° .故选:D.十一、平行四边形的性质( 共 1 小题)12. ( 2022•朝阳)将一个三角尺按如图所示的方式放置在一张平行四边形的纸片上,NEFG=90° ,第 1 4 页 共 1 9 页NE GF= 6 Q° , ZA E F= 50° ,则 / £%的度数为( )D . 6 0 °【 解答】解:• • •四边形] 腼是平行四边形,: .A B //D C ,二 NA E G= ZE GC ,:/泣= 9 0 ° , /£ " =6 0 ° ,,/呼 = 3 0 ° ,二 / 期 =8 0 ° ,,/£%= 8 0 ° .故选:B .十二、圆周角定理( 共 1 小题)1 3 . ( 2 0 2 2 •朝阳)如图,在。 中,点 4是 BC 的中点,ZA D C = 2A °,则/ / 如 的 度 数 是 ( )C . 4 8 ° D . 6 6 °【 解答】解:• • •点/ 是前的中点,•.AC = AB.A ZA O B = 2ZA £)C = 2 X 2 4 ° =4 8 ° .故选:C .十三、命题与定理( 共 1 小题)1 4 . ( 2 0 2 2 •盘锦)下列命题不正确的是( )A. 经过直线外一点,有且只有一条直线与这条直线平行B . 负数的立方根是负数C. 对角线互相垂直的四边形是菱形D. 五边形的外角和是3 6 0 °第1 5页 共1 9页【 解答】解:/ 、经过直线外一点,有且只有一条直线与这条直线平行;故 / 正 确 ;B 、负数的立方根是负数;故 8 正确;G对角线互相垂直的平行四边形是菱形,故 C 错误;D 、五边形的外角和是3 6 0 ° ,故 正确;故选:C .十四、关于x 轴、y 轴对称的点的坐标( 共 1 小题)1 5. ( 2 0 2 2 •沈阳)在平面直角坐标系中,点 4 ( 2 , 3 )关于y轴对称的点的坐标是( )A . ( - 2 , - 3 ) B. ( - 2 , 3 ) C . ( 2, - 3 ) D . ( - 3 , - 2 )【 解答】解:点 4 ( 2 , 3 )关于y轴的对称点坐标为(-2 , 3 ) .故选:B .十五、中心对称图形( 共 2小题)1 6 . ( 2 0 2 2 •辽宁)下列图形中,既是轴对称图形又是中心对称图形的是( )【 解答】解:A.不是中心对称图形,是轴对称图形,故此选项不合题意;B .不是中心对称图形,是轴对称图形,故此选项不合题意;C .既是中心对称图形,也是轴对称图形,故此选项符合题意;D.是中心对称图形,不是轴对称图形,故此选项不合题意;故选:C .1 7. ( 2 0 2 2 •丹东)如图,在四边形4 ? 切 中 ,A B //C D , A B = C D ,对 角 线 然 与 被 交 于 点 。 ,点 £是 在的中点,连 接 第 △儿? » 的周长为1 2 c z » , 则下列结论错误的是( )A . O E //A BB . 四边形4 6 (勿是中心对称图形C . 的周长等于第1 6页 共1 9页D . 若乙例=9 0 ° ,则四边形/ 腼是轴对称图形【 解答】解「 : A B H C D , A B = C D ,. ..四边形力腼是平行四边形,• 对角 线 花 与 物 交 于 点 ,点E是4 的中点,.•.O £ 是△ ? ! 劭的中位线,J.O E //A B ,选项结论正确,不符合题意;♦ . •四边形A B C D是中心对称图形,• ••8 选项结论正确,不符合题意;川的周长为12 cm,/\E O D的周长等于(5cm,选项结论错误,符合题意;若/ 4 6 C =9 0 ° ,则四边形4 比1〃是矩形,是轴对称图形,〃选项结论正确,不符合题意;故选:C .十六、简单几何体的三视图( 共 1 小题)1 8 . ( 2 0 2 2 •大连)下列立体图形中,主视图是圆的是( )【 解答】解:A.圆锥的主视图是等腰三角形,因此选项4不符合题意;B .三棱柱的主视图是矩形,因此选项8不符合题意;C .圆柱的主视图是矩形,因此选项C 不符合题意;D .球的主视图是圆,因此选项。 符合题意;故选:D .十七、简单组合体的三视图( 共 5 小题)1 9 . ( 2 0 2 2 •朝阳)如图所示的几何体是由5 个大小相同的小立方块搭成的,它的主视图是( )/ 主 视方向第 1 7 页 共 1 9 页【 解答】解:从正面看,只有一层,共有四个小正方形, .故选:B .□ I □20. ( 2022•鞍山)如图所示的几何体是由4 个大小相同的小正方体搭成的,它的左视图是( )【 解答】解:从左面可看,底层是两个小正方形,上层右边是一个小正方形.故选:C .21. ( 2022•丹东)如图是由几个完全相同的小正方体组成的立体图形,它的左视图是( )故 选 :B .22. ( 2022•沈阳)如图是由4 个相同的小立方体搭成的几何体,这个几何体的主视图是( )第 1 8 页 共 1 9 页23. ( 2022•辽宁) 如图是由6个完全相同的小正方体组成的几何体, 这个几何体的主视图是( )故选:B.第 1 9 页 共 1 9 页。
