
线弹性断裂力学02正式.ppt
65页2.3 应力强度因子断裂准则应力强度因子断裂准则 引言:应力强度因子断裂准则的提出 经典能量平衡理论,提出了能量释放率这个重要概念,所建立的断裂准则在概念上很清楚,形式上也很简单但经典理论的结果不便于应用,因为能量释放率的计算比较复杂,而且表面自由能和表面能也不易测量 Griffith裂纹能量释放率为 Griffith裂纹判据 2.3 应力强度因子断裂准则应力强度因子断裂准则 因此,近代线弹性断裂力学的研究都注重裂纹尖端应力场的分析,从应力场的特征寻找裂纹失稳扩展的条件,即应力强度因子断裂准则(K准则);并研究了裂纹尖端塑性区的影响和修正,使脆性断裂准则能用于实际工程材料 断裂发生条件: 根据能量释放观点,物体在发生断裂时,裂纹尖端要释放出多余的能量这个能量必然与裂纹尖端附近区域的应力场有关,裂纹尖端应力场的能量强度足够大时,断裂即可发生,反之就不会发生2.3.1 裂纹体的三种断裂类型裂纹体的三种断裂类型 裂纹体中的裂纹,由于外加作用力的不同,可以分为三种不同的类型,如图所示,相应地称为Ⅰ、Ⅱ、Ⅲ型断裂问题 由于Ⅰ型裂纹是最常见和最危险的,容易引起超低应力脆断;近年来对I型裂纹的研究也最多,实际裂纹即使是复合型裂纹,也往往把它作为Ⅰ型裂纹来处理,这样更安全。
2.3.2 平面应力与平面应变平面应力与平面应变 在分析裂纹尖端的应力场时,将遇到两种应力应变状态,即平面应力状态和平面应变状态 取一块中央带有穿透裂纹,受与裂纹垂直的均匀拉应力作用的平板(右图)来研究 2.3.2 平面应力与平面应变平面应力与平面应变 对于薄板,裂纹尖端材料将受到xOy平面的应力的作用,称这种状态为平面应力状态此时 但 平面应力状态是三向应变状态,裂纹尖端容易产生变形 对于厚板,裂纹尖端材料的应变仅发生在xOy平面内,所以称这种状态为平面应变状态 这种状态,不仅有的作用,而且平面应变状态是三向应力状态,裂纹尖端不易产生变形 2.3.2 平面应力与平面应变平面应力与平面应变 对于实际构件来说,我们可以认为:Ø如果构件的厚度很小就是平面应力状态;Ø如果构件的厚度很大就是平面应变状态;Ø如果构件的厚度中等,则两个外表面属于平面应力状态,中间的大部分区域属于平面应变状态 2.3.3 裂纹尖端附近的应力场裂纹尖端附近的应力场 20世纪50年代,Irwin利用 Westergaard研究裂纹问题所采用的线弹性力学方法,对裂纹尖端附近区域的应力状态进行了研究,得出了裂纹尖端附近各点(极坐标为)的应力分量,并引出了“应力强度因子”的概念。
2.3.3 裂纹尖端附近的应力场裂纹尖端附近的应力场 取单位厚度的无限大平板,中央有长为2a的穿透裂纹,承受与裂纹垂直的均匀拉伸应力,如图所示 对于薄板,为平面应力状态 三个应力分量为:对于厚板,为平面应变状态,还有 2.3.3 裂纹尖端附近的应力场裂纹尖端附近的应力场 三个应力分量为:在应力场内的任意给定的点(),其应力分量的大小均为这个因子所决定 当增大时,应力场内各点的应力均“放大”了;减少时,应力场内各点的应力就“缩小”了2.3.3 裂纹尖端附近的应力场裂纹尖端附近的应力场 实质上是一个比例系数当其较大时,应力场中各点的应力均较大,应力场的强度较强;反之,则应力场的强度较弱,即: 是决定裂纹尖端区域应力场强度的因子,称其为应力强度因子注脚Ⅰ表示:是Ⅰ型断裂问题的应力强度因子)用符号 表示 在研究无限大平板中心穿透裂纹时,有 2.3.3 裂纹尖端附近的应力场裂纹尖端附近的应力场 由上述可知,在裂纹尖端区域起主导作用的那一部分应力场,可以用参数 来描述 传统强度学只考虑外载荷对断裂的影响,而没有考虑构件存在初始裂纹这一重要因素;而应力强度因子这个参数,既包含外加的名义应力,又包含构件中已经存在的裂纹长度a,即既与远离裂纹平板承受的均匀拉应力成正比,又与裂纹的形式和尺寸有关。
2.3.3 裂纹尖端附近的应力场裂纹尖端附近的应力场 令,即可得裂纹延长线上的各应力分量 对于平面应力状态,;对于平面应变状态,则有2.3.3 裂纹尖端附近的应力场裂纹尖端附近的应力场 当给定值时,我们可作出随的变化曲线,如图所示 由图我们可以进一步看出以下几点: (l) 当很大时,应力趋于零,然而实际应该为 所以很明显,应力的求解式仅在裂纹尖端周围一个有限的区域内有效,是裂纹尖端附近应力场的近似表达式,愈接近裂纹尖端,精确度愈高,即仅在时才适用所以应力强度因子又可以用极限形式来描述,即2.3.3 裂纹尖端附近的应力场裂纹尖端附近的应力场 应力力强强度因子就是用来描述度因子就是用来描述这种奇异性的种奇异性的力学参量力学参量2) 当当时,,应力力无限增大,无限增大, 的点,的点,应力是奇点力是奇点(所所谓奇点就是此点的奇点就是此点的数数值趋近于无近于无穷大大)也就是说,裂,裂纹尖端尖端应力力场具有奇异性具有奇异性2.3.3 裂纹尖端附近的应力场裂纹尖端附近的应力场 (3) 应力无限增大,这反映了完全不进入塑性状态的“理想脆性”材料的特征。
因此,用来表达裂纹尖端的应力场,严格来说,只对“理想脆性”材料才合适,实际工程材料要应用应力强度因子概念,则必须进行修正 2.3.3 裂纹尖端附近的应力场裂纹尖端附近的应力场 研究无限大平板中心穿透裂纹时,得到 其他裂纹体的应力强度因子 式中 Y 是和裂纹形状、加载方式及构件几何形状等有关的系数 对无限大平板中心穿透裂纹2.3.3 裂纹尖端附近的应力场裂纹尖端附近的应力场 对一般平板来概括,则应力强度因子表达式可写成应力强度因子的量纲为 式中 —— 构件几何形状修正系数 2.3.3 裂纹尖端附近的应力场裂纹尖端附近的应力场 对于Ⅱ型裂纹(如图 (a)),有 对于平面应力状态,;对于平面应变状态,实验结果表明,II型裂纹的扩展途径并非沿原来的裂纹线,而是沿着与原裂纹线成一定倾角的方向扩展,如图 (b)所示 2.3.3 裂纹尖端附近的应力场裂纹尖端附近的应力场 对于Ⅲ型裂纹(如图),有在平面应力和平面应变条件下,上式应力分量的表达式相同 实验结果表明,Ⅲ型裂纹的扩展方向和I型裂纹的扩展方向一致,都是沿着原裂纹线扩展的 2.3.4 K断裂准则断裂准则 由于应力强度因子是反映裂纹尖端应力场强弱程度的参数,而裂纹是否发生失稳扩展总是和裂纹尖端应力场的强弱程度有关的。
用应力强度因子来建立裂纹发生扩展的判据 对于Ⅰ型裂纹,当 (平面应变) (平面应力) 裂纹处于失稳扩展的临界状态这就是K断裂准则 时, 而分别称为平面应力状态和平面应变状态的临界应力强度因子1. K准则表达式2.3.4 K断裂准则断裂准则 K准则究竟能否成立 ? 不仅在于理论上的推导合乎逻辑,关键在于它能否通过试验直接或间接地测定出来,并且表明它确实是与裂纹的扩展有关 裂纹试样的拉断试验表明:一定材料在低应力脆断情况下,和是确实存在的 平面应变 平面应力 在裂纹尺寸一定时 ,它们的值越大,扩展临界应力 就越大相反外加应力一定时,它们的值愈大,扩展的临界尺寸就愈大 1. K准则表达式2.3.4 K断裂准则断裂准则 K准则究竟能否成立 ? 显然, 和 表征了材料抵抗裂纹失稳扩展的能力,是材料抗脆性破坏能力的一个韧性指标,是一个崭新的物理量,分别称为平面应力断裂韧性和平面应变断裂韧性因而,K准则是确实成立的 1. K准则表达式2.3.4 K断裂准则断裂准则 材料的断裂韧性值与裂纹处的应力状态有关,不同的应力状态对应的断裂韧性值不一样。
由于构件的厚度确定了构件中的应力状态,所以构件厚度直接影响材料的断裂韧性 当厚度较小时,趋于平面应力状态,断裂韧性值较高,称为平面应力断裂韧性不同的厚度所对应的 值不相同,有一个最佳厚度,其所对应的值最高厚度增加时, 值减小 当厚度增加到某一个数值时,裂纹尖端趋于平面应变状态,此时的断裂韧性值是一个较低的常值,这就是平面应变断裂韧性 不随厚度变化 2.3.4 K断裂准则断裂准则 2. K准则与G准则的关系K准则与G准则作为断裂判据,有何关系?比较一下I型裂纹的应力强度因子与能量释放率: 对于平面应力状态 能量释放率理想脆性材料弹性条件下有 G准则的裂纹临界扩展条件 说明K准则与G准则实际上是等同的 弹性条件下, 和 只取决于材料表面能 和弹性系数E(后者还与泊松比 有关),所以是材料的性能指标 2.3.4 K断裂准则断裂准则 2. K准则与G准则的关系平面应变状态 平面应力状态 代替代替E E 根据弹性力学分析根据弹性力学分析 2.3.4 K断裂准则断裂准则 2. K准则与G准则的关系综上所述,裂纹发生临界扩展的条件。
Ø当裂纹体的能量释放率达到临界能量释放率;Ø当裂纹尖端区域的应力强度因子达到其临界值或 )(或 )脆性断裂准则 平面应变断裂韧性 平面应力断裂韧性 通常把K准则作为断裂准则的常用形式,为什么? 应用K准则,应力强度因子的数值一般由计算得出,断裂韧性的数值由试验测定 2.3.4 K断裂准则断裂准则 2. K准则与G准则的关系对于Ⅱ型裂纹 ,按照与Ⅰ型裂纹问题同样的思路,有对于Ⅲ型裂纹,有 2.3.5 裂纹尖端塑性区裂纹尖端塑性区 前面所有的讨论,都是以理想脆性材料理想脆性材料为研究对象的,没有考虑材料塑性材料塑性的影响实际的工程材料,一般都具有一定的塑性,而不是理想脆性材料 脆性断裂准则的塑性修正 ?1. 塑性区对断裂韧性的影响 2. 塑性区对应力强度因子的影响(或 )(或 )脆性断裂准则2.3.5 裂纹尖端塑性区裂纹尖端塑性区 1. 塑性区对断裂韧性的影响塑性区对断裂韧性的影响 由于材料具有塑性,以及裂纹尖端应力集中的影响,当裂纹扩展时,即使是较小的工作应力,也会在裂纹尖端产生塑性变形,而形成一个微小的塑性区,如图所示随着裂纹的不断扩展,塑性区也必然向前扩展。
在塑性区的形成和扩展过程中,必然要吸收和消耗能量,这些能量也是靠外力做功提供的 塑性区的变形能量 产生弹性变形的弹性应变能,存储在塑性区内 产生塑性变形的塑性应变能,转化为热能而消耗 2.3.5 裂纹尖端塑性区裂纹尖端塑性区 1. 塑性区对断裂韧性的影响塑性区对断裂韧性的影响 实验表明,塑性变形虽然只发生在一个很小的区域内,但其塑性变形能的数值却相当大,远远超过了材料的表面能 例如:例如: 中低强度钢的塑性应变能要比表面能大4-6个数量级, 高强度钢的塑性应变能要比表面能大3个数量级 因此,对于实际工程材料来说,影响断裂的主要因素是塑性应变能塑性应变能而不是表面能表面能2.3.5 裂纹尖端塑性区裂纹尖端塑性区 1. 塑性区对断裂韧性的影响塑性区对断裂韧性的影响 这种影响表现在材料抵抗裂纹扩展的能力上,即影响材料的断裂韧性 如前所述,裂纹在扩展过程中,要消耗大量的塑性变形能,在扩展同样的裂纹长度时,需要外力做更多的功,即扩展同样的裂纹长度,需要对裂纹体施加较大的外载荷 所以,裂纹尖端塑性区的形成和扩展,提高了材料的断裂韧性,这就是塑性材料有较好的抵抗裂纹扩展能力的原因。
2.3.5 裂纹尖端塑性区裂纹尖端塑性区 2. 塑性区对应力强度因子的影响塑性区对应力强度因子的影响 塑性区还要影响裂纹尖端应力场分布,因而要影响应力强度因子 严格来说,用应力强度因子来表达裂纹尖端的应力状态,只对理想脆性材料才合适因为在塑性区域内,由于塑性变形而不断把机械能转化成热能,根本无法用应力强度因子的概念来反映其内部变形规律 考虑了塑性区的影响,对K作适当修正之后,我们仍然可以应用线弹性理论所得的结果 2.3.5 裂纹尖端塑性区裂纹尖端塑性区 2. 塑性区对应力强度因子的影响塑性区对应力强度因子的影响 考虑塑性区影响的等效裂纹尺寸法最简便而实用的方法) 如果我们把塑性区近似地看成圆形,塑性半径为R/2,如图所示则等效裂纹尺寸法认为:考虑塑性后,裂纹长度为a时的弹塑性应力场(如图中的曲线DEH)与裂纹长度为(a+ry)时的弹性应力场(如图中的曲线GEF)是等效的 的假定可以在理论上得出证明 2.3.5 裂纹尖端塑性区裂纹尖端塑性区 2. 塑性区对应力强度因子的影响塑性区对应力强度因子的影响 考虑塑性区影响的等效裂纹尺寸法。
最简便而实用的方法) 也就是说,如果将实际的裂纹长度a以虚设的等效裂纹长度( a+ry )代替,则弹性材料的应力分布就可以用一种理想脆性材料的应力分布来处理了,只要将x轴上的坐标平移的ry的距离即可 2.3.5 裂纹尖端塑性区裂纹尖端塑性区 2. 塑性区对应力强度因子的影响塑性区对应力强度因子的影响 这样,就可以借用理想脆性材料应力强度因子的计算公式 ((1)对于无限大平板中央穿透裂纹情况)对于无限大平板中央穿透裂纹情况 式中,塑性半径的数值可由下式确定 (平面应力状态) (平面应变状态) 有何关系?原因?2.3.5 裂纹尖端塑性区裂纹尖端塑性区 2. 塑性区对应力强度因子的影响塑性区对应力强度因子的影响 ((2)对于平面应力状态)对于平面应力状态 2.3.5 裂纹尖端塑性区裂纹尖端塑性区 2. 塑性区对应力强度因子的影响塑性区对应力强度因子的影响 ((3)对于平面应变状态)对于平面应变状态 2.3.5 裂纹尖端塑性区裂纹尖端塑性区 2. 塑性区对应力强度因子的影响塑性区对应力强度因子的影响 可可见,考,考虑塑性影响后,塑性影响后,值均有增大。
均有增大 平面平面应力力平面平面应变和和 称称为考考虑塑性区影响后的塑性区影响后的应力力强强度因子的增大系数平面度因子的增大系数平面应力与平面力与平面应变情况相比情况相比较,平面,平面应变时应力力强强度因子的增大系数比平均度因子的增大系数比平均应力力时要小些2.3.5 裂纹尖端塑性区裂纹尖端塑性区 2. 塑性区对应力强度因子的影响塑性区对应力强度因子的影响 应当指出,确定塑性半径的上述公式和利用应当指出,确定塑性半径的上述公式和利用 值概念于实值概念于实际工程材料,需具备两个条件:际工程材料,需具备两个条件:Ø一是不能适用于塑性区域内部;一是不能适用于塑性区域内部;Ø二是塑性区域不能过大二是塑性区域不能过大(即小范围屈服即小范围屈服) 为了有个数量级概念,以无限平板裂纹尖端为例来说明,为了有个数量级概念,以无限平板裂纹尖端为例来说明,它的近似解为它的近似解为 它的精确解它的精确解(塑性分析塑性分析)为2.3.5 裂纹尖端塑性区裂纹尖端塑性区 0.20.8713%0.10.937%2. 塑性区对应力强度因子的影响塑性区对应力强度因子的影响 其比值为:其比值为:误差误差所以,只有在所以,只有在r相对于相对于a值是一个小值时,上述近似应用才成立值是一个小值时,上述近似应用才成立 。
2.3.5 裂纹尖端塑性区裂纹尖端塑性区 2. 塑性区对应力强度因子的影响塑性区对应力强度因子的影响 既然要求既然要求,,则更要求更要求所以必所以必须是小范是小范围屈服有的屈服有的资料也料也规定,其限制条件定,其限制条件为 式中,式中, 表示净截面上的应力(即断裂截面上的平均应表示净截面上的应力(即断裂截面上的平均应力)因为当力)因为当 时,塑性半径已可与时,塑性半径已可与a相比拟,相比拟,这时塑性区已扩大到很大范围,塑性半径的计算式和应力这时塑性区已扩大到很大范围,塑性半径的计算式和应力强度因子的修正式就不再适用了强度因子的修正式就不再适用了 2.3.5 裂纹尖端塑性区裂纹尖端塑性区 3. 影响断裂韧性的因素影响断裂韧性的因素断裂断裂韧性性标志着构件抵抗断裂的能力志着构件抵抗断裂的能力 影响断裂影响断裂韧性的因素:性的因素:Ø 材料的表面能材料的表面能Ø 弹性模量性模量Ø 泊松比泊松比Ø 塑性塑性应变能能其中最主要的影响因素是塑性其中最主要的影响因素是塑性应变能 影响塑性影响塑性应变能的因素主要有两个方面:能的因素主要有两个方面:二是构件二是构件(例如平板例如平板)的厚度的厚度B。
一是材料的屈服极限一是材料的屈服极限2.3.5 裂纹尖端塑性区裂纹尖端塑性区 3. 影响断裂韧性的因素影响断裂韧性的因素1) 材料屈服极限对断裂韧性的影响材料屈服极限对断裂韧性的影响 主要表主要表现在以下三个方面:在以下三个方面: (1) 材料的材料的 越低,裂纹尖端越越低,裂纹尖端越容易进入屈服状态而产生塑性变形,容易进入屈服状态而产生塑性变形,因而塑性应变能将较大,使构件具因而塑性应变能将较大,使构件具有较高的断裂韧性;反之,则断裂有较高的断裂韧性;反之,则断裂韧性较低韧性较低(如图如图)所以,LY12铝合铝合金虽然静强度较低,却较金虽然静强度较低,却较LC4铝合铝合金或金或30CrMnSi2A钢材的抗断裂性钢材的抗断裂性能为优 2.3.5 裂纹尖端塑性区裂纹尖端塑性区 3. 影响断裂韧性的因素影响断裂韧性的因素1) 材料屈服极限对断裂韧性的影响材料屈服极限对断裂韧性的影响 主要表主要表现在以下三个方面:在以下三个方面: (2) 温度降低时,材料的温度降低时,材料的 提提高,因此低温下材料呈现脆性状高,因此低温下材料呈现脆性状态,抗断裂性能降低,易发生断态,抗断裂性能降低,易发生断裂;反之,温度提高时,抗断裂裂;反之,温度提高时,抗断裂性能提高性能提高(如图如图)。
但过高的温度但过高的温度则会使断裂韧性降低以至丧失则会使断裂韧性降低以至丧失 2.3.5 裂纹尖端塑性区裂纹尖端塑性区 3. 影响断裂韧性的因素影响断裂韧性的因素1) 材料屈服极限对断裂韧性的影响材料屈服极限对断裂韧性的影响 主要表主要表现在以下三个方面:在以下三个方面: (3) 加载速率对断裂韧性也有明显影响,如图所示通常加载速率对断裂韧性也有明显影响,如图所示通常是加载速率提高,使材料的是加载速率提高,使材料的 增大,因而材料变脆,抗增大,因而材料变脆,抗断裂性能降低但继续提高加载速率,材料不能及时响应,断裂性能降低但继续提高加载速率,材料不能及时响应,断裂韧性反而提高了为了考虑这种影响,引入动态断裂断裂韧性反而提高了为了考虑这种影响,引入动态断裂韧性韧性 ,它是与加载速率有关的材料断裂韧性,在研究,它是与加载速率有关的材料断裂韧性,在研究加载速率很高的动载作用下的构件断裂问题时,才要用到加载速率很高的动载作用下的构件断裂问题时,才要用到动态断裂韧性动态断裂韧性 2.3.5 裂纹尖端塑性区裂纹尖端塑性区 3. 影响断裂韧性的因素影响断裂韧性的因素2) 构件厚度对断裂韧性的影响构件厚度对断裂韧性的影响 构件的厚度不同时,在构件中构件的厚度不同时,在构件中将产生不同的应力状态和变形,直接将产生不同的应力状态和变形,直接影响构件的断裂韧性。
影响构件的断裂韧性 如图所示,构件较薄时处于平如图所示,构件较薄时处于平面应力状态面应力状态 断裂韧性值较高断裂韧性值较高构件较厚时,平面应变状态构件较厚时,平面应变状态 断裂韧性值较低断裂韧性值较低 2.3.5 裂纹尖端塑性区裂纹尖端塑性区 3. 影响断裂韧性的因素影响断裂韧性的因素2) 构件厚度对断裂韧性的影响构件厚度对断裂韧性的影响 所以,断裂韧性是随构件的厚度所以,断裂韧性是随构件的厚度B而变化的,如图所而变化的,如图所示 理理论分析指出,可以用下式作分析指出,可以用下式作为厚度界限的定性判厚度界限的定性判别标准,准,即当即当时,,认为构件构件处于平面于平面应变状状态 2.4 LEFM在结构静强度分析方面的应用在结构静强度分析方面的应用 2.4.1 线弹性断裂力学的适用范围线弹性断裂力学的适用范围 在传统的材料强度学和断裂力学中,材料或构件的断裂在传统的材料强度学和断裂力学中,材料或构件的断裂准则是完全不同的准则是完全不同的 传统的材料强度学认为,材料一般分为脆性和塑性两传统的材料强度学认为,材料一般分为脆性和塑性两大类,两种材料的断裂在一般受拉情况下是截然不同的。
脆大类,两种材料的断裂在一般受拉情况下是截然不同的脆性材料总是脆性断裂,塑性材料总是塑性断裂,断裂准则为性材料总是脆性断裂,塑性材料总是塑性断裂,断裂准则为 :: (对塑性材料塑性材料) (对脆性材料脆性材料)这里没有考虑材料或构件中的缺陷对其强度的影响这里没有考虑材料或构件中的缺陷对其强度的影响 2.4 LEFM在结构静强度分析方面的应用在结构静强度分析方面的应用 2.4.1 线弹性断裂力学的适用范围线弹性断裂力学的适用范围 断裂力学的基本出发点,是承认材料或构件中不可避免地断裂力学的基本出发点,是承认材料或构件中不可避免地存在裂纹、夹杂等各种缺陷这样一个事实,弹性理论分析存在裂纹、夹杂等各种缺陷这样一个事实,弹性理论分析的基础上,引入了的基础上,引入了应力强度因子应力强度因子和和断裂韧性断裂韧性两个概念,不管是两个概念,不管是什么材料,只要当它的应力强度因子达到了临界值,就会发生什么材料,只要当它的应力强度因子达到了临界值,就会发生断裂因此断裂准则为断裂因此断裂准则为 (或或 )) 2.4 LEFM在结构静强度分析方面的应用在结构静强度分析方面的应用 2.4.1 线弹性断裂力学的适用范围线弹性断裂力学的适用范围 但需要说明的是,并非任何应力和裂纹大小情况下的断裂,但需要说明的是,并非任何应力和裂纹大小情况下的断裂,都能按照断裂力学的断裂准则进行分析。
这可以从图中看出都能按照断裂力学的断裂准则进行分析这可以从图中看出) 2.4 LEFM在结构静强度分析方面的应用在结构静强度分析方面的应用 2.4.2 应用举例应用举例 由于线弹性断裂力学的由于线弹性断裂力学的K准则,把材料的准则,把材料的抗断裂性能抗断裂性能和构和构件内的件内的裂纹尺寸裂纹尺寸以及实际的以及实际的断裂应力断裂应力定量地联系起来了,因而,定量地联系起来了,因而,根据根据K准则,线弹性断裂力学在结构静强度分析方面可有以下准则,线弹性断裂力学在结构静强度分析方面可有以下三方面的应用:三方面的应用: 第一,若已知第一,若已知(通过无损探伤通过无损探伤)构件内裂纹的大小和位置,构件内裂纹的大小和位置,就可根据就可根据 (或或 )来估算构件的断裂应力来估算构件的断裂应力 ,它就是破,它就是破损构件的实际承载能力或剩余强度损构件的实际承载能力或剩余强度2.4 LEFM在结构静强度分析方面的应用在结构静强度分析方面的应用 2.4.2 应用举例应用举例 第二,若已知构件的工作应力第二,若已知构件的工作应力 ,就可根据,就可根据 (或或 )来确定构件的临界裂纹长度来确定构件的临界裂纹长度 ,如探伤出来的裂纹,如探伤出来的裂纹 ,,则构件是安全的,否则不安全。
由此可建立相应的检查标准则构件是安全的,否则不安全由此可建立相应的检查标准 第三,若已知构件裂纹尺寸的大小和工作应力,就可算第三,若已知构件裂纹尺寸的大小和工作应力,就可算出裂纹尖端应力强度因子出裂纹尖端应力强度因子 ,据以判断构件是否安全若,据以判断构件是否安全若 (或或 ),则构件就是安全的,否则就有脆断的危,则构件就是安全的,否则就有脆断的危险 现在举例说明以上三方面的应用现在举例说明以上三方面的应用 2.4 LEFM在结构静强度分析方面的应用在结构静强度分析方面的应用 2.4.2 应用举例应用举例 例例 1 某飞机机翼大梁下缘条凸某飞机机翼大梁下缘条凸缘的承载情况如图所示,经长期缘的承载情况如图所示,经长期工作后,孔边出现工作后,孔边出现lmm深的穿透深的穿透裂纹,材料为裂纹,材料为30CrMnSiNi2A特特种钢,问该构件的承载能力还有种钢,问该构件的承载能力还有多少?多少? 已知:已知:确定剩余强度确定剩余强度 2.4 LEFM在结构静强度分析方面的应用在结构静强度分析方面的应用 2.4.2 应用举例应用举例 解:孔解:孔边穿透裂穿透裂纹当当,由,由资料料查得得故故应按平面按平面应变来来计算,即当算,即当时,有,有由于大梁材料由于大梁材料为高高强强度材料,略去塑性区不度材料,略去塑性区不计,,则上式上式中的中的a即即为可可测见的裂的裂纹(a==lmm),得,得由由 判断其状态(平面应变判断其状态(平面应变/应力)应力)确定剩余强度确定剩余强度 2.4 LEFM在结构静强度分析方面的应用在结构静强度分析方面的应用 2.4.2 应用举例应用举例 解:解:与传统静强度观点作比较,可将这时的承载能力换算成与传统静强度观点作比较,可将这时的承载能力换算成过载。
假设按静强度计算时安全系数取为过载假设按静强度计算时安全系数取为f==1.5,则该构件,则该构件的许用应力为的许用应力为 由于由于该构件所在的构件所在的飞机是按照机是按照过载为 设计的,设计的,则现在在飞机剩余承机剩余承载能力能力为 确定剩余强度确定剩余强度 2.4 LEFM在结构静强度分析方面的应用在结构静强度分析方面的应用 2.4.2 应用举例应用举例 例例2 如果例如果例1中的构件所发生的是孔边角裂纹,其尺寸如图中的构件所发生的是孔边角裂纹,其尺寸如图所示,问剩余强度又为多少?所示,问剩余强度又为多少? 解:孔边角裂纹的应力强解:孔边角裂纹的应力强度因子的表达式为度因子的表达式为确定剩余强度确定剩余强度 2.4 LEFM在结构静强度分析方面的应用在结构静强度分析方面的应用 2.4.2 应用举例应用举例 例例2 如果例如果例1中的构件所发生的是孔边角裂纹,其尺寸如图中的构件所发生的是孔边角裂纹,其尺寸如图所示,问剩余强度又为多少?所示,问剩余强度又为多少? 解:解:当当时,有,有 即过载达到即过载达到4.07时,大梁就可能断裂。
时,大梁就可能断裂 确定剩余强度确定剩余强度 2.4 LEFM在结构静强度分析方面的应用在结构静强度分析方面的应用 2.4.2 应用举例应用举例 例例3 有一厚有一厚B=5mm、长、长L==200mm和宽和宽W=50mm的机用板条,的机用板条,由由40SiMiNIVNb钢制成,材料受钢制成,材料受单向均匀拉伸应力作用,在单侧有单向均匀拉伸应力作用,在单侧有穿透裂纹,如图所示若该板的设穿透裂纹,如图所示若该板的设计应力为屈服极限的计应力为屈服极限的2/3,则当裂,则当裂纹失稳扩展时,裂纹的临界长度?纹失稳扩展时,裂纹的临界长度? 确定临界裂纹长度确定临界裂纹长度 2.4 LEFM在结构静强度分析方面的应用在结构静强度分析方面的应用 2.4.2 应用举例应用举例 解:根据题中给出的板的尺寸,可暂按半无限大平板、单侧穿解:根据题中给出的板的尺寸,可暂按半无限大平板、单侧穿透裂纹受单向均匀拉伸的情况处理这样,应力强度因子表达透裂纹受单向均匀拉伸的情况处理这样,应力强度因子表达式为式为 根据根据 所以,应按平面应变状态计算有所以,应按平面应变状态计算有 确定临界裂纹长度确定临界裂纹长度 2.4 LEFM在结构静强度分析方面的应用在结构静强度分析方面的应用 2.4.2 应用举例应用举例 解:解:又因为又因为 所以所以 因因为故按半无限大平面板具有故按半无限大平面板具有单侧穿透裂穿透裂纹计算是合理的。
算是合理的 确定临界裂纹长度确定临界裂纹长度 2.4 LEFM在结构静强度分析方面的应用在结构静强度分析方面的应用 2.4.2 应用举例应用举例 解:解:考虑塑性影响时,则有考虑塑性影响时,则有 则则 这就是说,当裂纹扩展到这就是说,当裂纹扩展到0.626mm时,板即发生脆断时,板即发生脆断而这种裂纹深度相当于板边受工具划伤的情况,可见,而这种裂纹深度相当于板边受工具划伤的情况,可见,高强度钢对裂纹是非常敏感的高强度钢对裂纹是非常敏感的 确定临界裂纹长度确定临界裂纹长度 2.4 LEFM在结构静强度分析方面的应用在结构静强度分析方面的应用 2.4.2 应用举例应用举例 例例4 一超高强度钢制构件,设计许用应力一超高强度钢制构件,设计许用应力 ,,对构件进行探伤只能发现大于对构件进行探伤只能发现大于1 mm深度的缺陷因此假定虽然深度的缺陷因此假定虽然经过了探伤检查,仍有可能在其内部存在着深度为经过了探伤检查,仍有可能在其内部存在着深度为a=lmm、长、长度为度为2c =4mm的表面裂纹现有两种钢材可供选择,问应选哪的表面裂纹。
现有两种钢材可供选择,问应选哪一种安全合适?一种安全合适? 判断构件是否安全判断构件是否安全 解:从静解:从静强强度度观点看,两种点看,两种钢材的材的强强度度储备为对钢材材B 对钢材对钢材A选选A2.4 LEFM在结构静强度分析方面的应用在结构静强度分析方面的应用 2.4.2 应用举例应用举例 判断构件是否安全判断构件是否安全 解:解:从断裂力学的观点来看,两种钢材的应力强度因子如表所列从断裂力学的观点来看,两种钢材的应力强度因子如表所列 46.5277.53钢材种材种类A2059.47 MPaB1667.19 MPa对钢材对钢材A,设工作应力即为许用应力,即,设工作应力即为许用应力,即 ,,则则 ,由裂纹的几何参数,由裂纹的几何参数 ,,可查得裂纹形状参数可查得裂纹形状参数 根据表面裂纹应力强度因根据表面裂纹应力强度因子表达式,有子表达式,有2.4 LEFM在结构静强度分析方面的应用在结构静强度分析方面的应用 2.4.2 应用举例应用举例 判断构件是否安全判断构件是否安全 解:解:从断裂力学的观点来看,两种钢材的应力强度因子如表所列。
从断裂力学的观点来看,两种钢材的应力强度因子如表所列 46.5277.53钢材种材种类A2059.47 MPaB1667.19 MPa对钢材材B,有,有,由,由,,查得得,于是得,于是得 2.4 LEFM在结构静强度分析方面的应用在结构静强度分析方面的应用 2.4.2 应用举例应用举例 判断构件是否安全判断构件是否安全 解:解:从断裂力学的观点来看,可见,钢材从断裂力学的观点来看,可见,钢材A不满足脆断条不满足脆断条件,在的工作应力下,必然产生脆性断裂;而钢材件,在的工作应力下,必然产生脆性断裂;而钢材B能满足能满足脆断条件,是安全的脆断条件,是安全的 因此,过高地按静强度观点提出强度储备要求,将材料因此,过高地按静强度观点提出强度储备要求,将材料的强度极限或屈服极限提高到不必要的程度,反而会使材料的强度极限或屈服极限提高到不必要的程度,反而会使材料的脆性断裂性能大幅度降低,得到相反的效果,造成十分严的脆性断裂性能大幅度降低,得到相反的效果,造成十分严重的脆性断裂事故所以,当前在新材料的研制中,是同时重的脆性断裂事故所以,当前在新材料的研制中,是同时注意使断裂韧性和强度极限成比例地增高的。
注意使断裂韧性和强度极限成比例地增高的。












