
2019_2020学年高中数学第二章推理与证明2.2直接证明与间接证明2.2.2反证法讲义新人教A版.docx
6页2.2.2 反证法1.反证法是间接证明的一种基本方法.假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.2.用反证法证明命题的步骤,大体上分为:(1)反设:假设命题的结论不成立,即假设结论的反面成立;(2)归谬:从假设出发,通过推理论证,得出矛盾;(3)结论:由矛盾判定假设不正确,从而肯定命题的结论正确.3.反证法常见的矛盾类型反证法的关键是在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、定理、公理、事实矛盾等.反证法中的“反设”和“归谬”(1)反证法中的“反设”,这是应用反证法的第一步,也是关键一步.“反设”的结论将是下一步“归谬”的一个已知条件.“反设”是否正确、全面,直接影响下一步的证明.做好“反设”应注意:①正确分清题设和结论;②对结论实施正确否定;③对结论否定后,找出其所有情况.(2)反证法的“归谬”是反证法的核心,其含义是从命题结论的题设(即把“反设”作为一个新的已知条件)及原命题的条件出发,引用一系列论据进行正确推理,推出与已知条件、定义、定理、公理等相矛盾的结果.1.判一判(正确的打“√”,错误的打“×”)(1)反证法属于间接证明问题的方法.( )(2)反证法的证明过程既可以是合情推理也可以是一种演绎推理.( )(3)反证法的实质是否定结论导出矛盾.( )答案 (1)√ (2)× (3)√2.做一做(1)已知 a≠0,证明关于 x 的方程 ax=b 有且只有一解,适宜用________证明.(2)用反证法证明命题“a,b∈N,如果 ab 可被 5 整除,那么 a,b 至少有一个能被 5 整除”,则假设的内容是________.x+1则 x0<0,x0≠-1 且 ax0=-x0-2x0+1<1,解得
