好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

备战2025年高考理科数学考点一遍过考点12导数的应用.docx

39页
  • 卖家[上传人]:wo****o
  • 文档编号:597116237
  • 上传时间:2025-01-17
  • 文档格式:DOCX
  • 文档大小:1.80MB
  • / 39 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 专题12 导数的应用1.导数在研究函数中的应用(1)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).2.生活中的优化问题会利用导数解决某些实际问题.一、导数与函数的单调性一般地,在某个区间(a,b)内:(1)如果,函数f (x)在这个区间内单调递增;(2)如果,函数f (x)在这个区间内单调递减;(3)如果,函数f (x)在这个区间内是常数函数.注意:(1)利用导数研究函数的单调性,要在函数的定义域内讨论导数的符号;(2)在某个区间内,()是函数f (x)在此区间内单调递增(减)的充分条件,而不是必要条件.例如,函数在定义域上是增函数,但.(3)函数f (x)在(a,b)内单调递增(减)的充要条件是()在(a,b)内恒成立,且在(a,b)的任意子区间内都不恒等于0.这就是说,在区间内的个别点处有,不影响函数f (x)在区间内的单调性.二、利用导数研究函数的极值和最值1.函数的极值一般地,对于函数y=f (x),(1)若在点x=a处有f ′(a)=0,且在点x=a附近的左侧,右侧,则称x=a为f (x)的极小值点,叫做函数f (x)的极小值.(2)若在点x=b处有=0,且在点x=b附近的左侧,右侧,则称x=b为f (x)的极大值点,叫做函数f (x)的极大值.(3)极小值点与极大值点通称极值点,极小值与极大值通称极值.2.函数的最值函数的最值,即函数图象上最高点的纵坐标是最大值,图象上最低点的纵坐标是最小值,对于最值,我们有如下结论:一般地,如果在区间上函数的图象是一条连续不断的曲线,那么它必有最大值与最小值.设函数在上连续,在内可导,求在上的最大值与最小值的步骤为:(1)求在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的一个是最大值,最小的一个是最小值.3.函数的最值与极值的关系(1)极值是对某一点附近(即局部)而言,最值是对函数的定义区间的整体而言;(2)在函数的定义区间内,极大(小)值可能有多个(或者没有),但最大(小)值只有一个(或者没有);(3)函数f (x)的极值点不能是区间的端点,而最值点可以是区间的端点;(4)对于可导函数,函数的最大(小)值必在极大(小)值点或区间端点处取得.三、生活中的优化问题生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.导数是求函数最值问题的有力工具.解决优化问题的基本思路是:考向一 利用导数研究函数的单调性1.利用导数判断或证明一个函数在给定区间上的单调性,实质上就是判断或证明不等式()在给定区间上恒成立.一般步骤为:(1)求f ′(x);(2)确认f ′(x)在(a,b)内的符号;(3)作出结论,时为增函数,时为减函数.注意:研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.2.在利用导数求函数的单调区间时,首先要确定函数的定义域,解题过程中,只能在定义域内讨论,定义域为实数集可以省略不写.在对函数划分单调区间时,除必须确定使导数等于零的点外,还要注意在定义域内的不连续点和不可导点.3.由函数的单调性求参数的取值范围的方法(1)可导函数在某一区间上单调,实际上就是在该区间上(或)(在该区间的任意子区间内都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围;(2)可导函数在某一区间上存在单调区间,实际上就是(或)在该区间上存在解集,这样就把函数的单调性问题转化成了不等式问题;(3)若已知在区间I上的单调性,区间I中含有参数时,可先求出的单调区间,令I是其单调区间的子集,从而可求出参数的取值范围.4.利用导数解决函数的零点问题时,一般先由零点的存在性定理说明在所求区间内至少有一个零点,再利用导数判断在所给区间内的单调性,由此求解.典例1 若,则A. B.C. D.【答案】A【解析】①令,则,∴在上单调递增,∴当时,,即,故A正确,B错误.②令,则,令,则,当时,;当时,,∴在上单调递增,在上单调递减,易知C,D不正确.故选A.【名师点睛】本题考查利用导数研究函数单调性,考查基本分析判断能力,属中档题.根据条件构造函数,再利用导数研究单调性,进而判断大小.典例2 已知函数.(1)当时,求函数的单调递增区间;(2)若函数在上单调递增,求实数的取值范围.【解析】由题意得:的定义域为,(1)当时,,则,当时,;当时,,的单调递增区间为:.(2).①当时,在上恒成立,在上单调递增,可知满足题意;②当时,,当时,;当时,,在上单调递减;在上单调递增,不满足题意.综上所述:.【名师点睛】本题考查利用导数求解函数的单调区间、根据函数在区间内的单调性求解参数取值范围的问题,关键是能够明确导数和函数单调性之间的关系,根据导函数的符号来确定函数的单调性.1.已知函数.(1)讨论函数的单调性;(2)设,证明:对任意,.考向二 利用导数研究函数的极值和最值1.函数极值问题的常见类型及解题策略(1)函数极值的判断:先确定导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)求函数极值的方法:①确定函数的定义域.②求导函数.③求方程的根.④检查在方程的根的左、右两侧的符号,确定极值点.如果左正右负,那么在这个根处取得极大值;如果左负右正,那么在这个根处取得极小值;如果在这个根的左、右两侧符号不变,则在这个根处没有极值.(3)利用极值求参数的取值范围:确定函数的定义域,求导数,求方程的根的情况,得关于参数的方程(或不等式),进而确定参数的取值或范围.2.求函数f (x)在[a,b]上最值的方法(1)若函数f (x)在[a,b]上单调递增或递减,f (a)与f (b)一个为最大值,一个为最小值.(2)若函数f (x)在区间(a,b)内有极值,先求出函数f (x)在区间(a,b)上的极值,与f (a)、f (b)比较,其中最大的一个是最大值,最小的一个是最小值.(3)函数f (x)在区间(a,b)上有唯一一个极值点时,这个极值点就是最大(或最小)值点.注意:(1)若函数中含有参数时,要注意分类讨论思想的应用.(2)极值是函数的“局部概念”,最值是函数的“整体概念”,函数的极值不一定是最值,函数的最值也不一定是极值.要注意利用函数的单调性及函数图象直观研究确定.3.利用导数解决不等式恒成立问题的“两种”常用方法:(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,恒成立,只需即可;恒成立,只需即可.(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解.典例3 若函数有极大值和极小值,则的取值范围是A. B.C. D.【答案】D【解析】,则.因为有极大值和极小值,所以有两个不等的实数根.所以,即,解得或.所以所求的取值范围是.故选D.【名师点睛】本题考查函数的极值与导数.三次多项式函数有极大值和极小值的充要条件是其导函数(二次函数)有两个不等的实数根.求解时,三次函数有极大值和极小值,则有两个不等的实数根,答案易求.典例4 已知函数.(1)当时,试判断函数的单调性;(2)若,求证:函数在上的最小值小于.【解析】(1)由题可得,设,则,所以当时,在上单调递增,当时,在上单调递减,所以,因为,所以,即,所以函数在上单调递增.(2)由(1)知在上单调递增,因为,所以,所以存在,使得,即,即,所以函数在上单调递减,在上单调递增,所以当时,令,,则恒成立,所以函数在上单调递减,所以,所以,即当时,故函数在上的最小值小于.2.已知函数,其中为实常数.(1)若是的极大值点,求的极小值;(2)若不等式对任意,恒成立,求b的最小值.考向三 (导)函数图象与单调性、极值、最值的关系1.导数与函数变化快慢的关系:如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得快,这时函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就“平缓”一些.2.导函数为正的区间是函数的增区间,导函数为负的区间是函数的减区间,导函数图象与x轴的交点的横坐标为函数的极值点.典例 5 设函数(,,),若函数在处取得极值,则下列图象不可能为的图象是【答案】D【解析】,因为函数在处取得极值,所以是的一个根,整理可得,所以,对称轴为.对于A,由图可得,适合题意;对于B,由图可得,适合题意;对于C,由图可得,适合题意;对于D,由图可得,不适合题意,故选D.3.设函数在上可导,其导函数为,若函数在处取得极大值,则函数的图象可能是A. B.C. D.考向四 生活中的优化问题1.实际生活中利润最大,容积、面积最大,流量、速度最大等问题都需要利用导数来求解相应函数的最大值.若在定义域内只有一个极值点,且在极值点附近左增右减,则此时唯一的极大值就是最大值.2.实际生活中用料最省、费用最低、损耗最小、最节省时间等问题都需要利用导数求解相应函数的最小值.用料最省、费用最低问题出现的形式多与几何体有关,解题时根据题意明确哪一项指标最省(往往要从几何体的面积、体积入手),将这一指标表示为自变量x的函数,利用导数或其他方法求出最值,但一定要注意自变量的取值范围.典例6 如图,点C为某沿海城市的高速公路出入口,直线BD为海岸线,∠CAB=π3,AB⊥BD,BC是以A为圆心,半径为1km的圆弧型小路.该市拟修建一条从C通往海岸的观光专线,其中P为BC上异于B,C的一点,PQ与AB平行,设∠PAB=θ.(1)证明:观光专线的总长度随θ的增大而减小;(2)已知新建道路PQ的单位成本是翻新道路的单位成本的2倍.当θ取何值时,观光专线的修建总成本最低?请说明理由.【解析】(1)由题意,∠CAP=π3−θ,所以,又PQ=AB−APcosθ=1−cosθ,所以观光专线的总长度为f(θ)=π3−θ+1−cosθ =−θ−cosθ+π3+1,0<θ<π3,因为当0<θ<π3时,f'(θ)=−1+sinθ<0,所以f(θ)在(0,π3)上单调递减,即观光专线的总长度随θ的增大而减小.(2)设翻新道路的单位成本为a(a>0),则总成本g(θ)=a(π3−θ+2−2cosθ) =a(−θ−2cosθ+π3+2),0<θ<π3,g'(θ)=a(−1+2sinθ),令g'(θ)=0,得sinθ=12,因为0<θ<π3,所以θ=π6,当0<θ<π6时,g'(θ)<0;当π6<θ<π3时,g'(θ)>0.所以,当θ=π6时,g(θ)最小.答:当θ=π6时,观光专线的修建总成本最低. 4.在四面体ABCD中,若,则四面体ABCD体积的最大值是A. B.C. D.1.已知函数fx=xlnx+3,则fx的单调递减区间为A.e,+∞ B.0,eC.0,1和1,e D.−∞,1和1,e2.设函数,则A.为的极大值点 B.为的极小值点C.为的极大值点 D.为的极小值点3.已知函数与。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.