好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2022年陕西省中考数学.docx

16页
  • 卖家[上传人]:凯和****啦
  • 文档编号:321038005
  • 上传时间:2022-07-03
  • 文档格式:DOCX
  • 文档大小:21.18KB
  • / 16 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 本文格式为Word版,下载可任意编辑 2022年陕西省中考数学 2022年陕西省中考数学试卷 (共25题,总分值120) 一、选择题(共10小题,每题3分,计30分.每题只有一个选项是符合题意的) 1.﹣18的相反数是(  ) A.18 B.﹣18 C. D. 2.若∠A=23°,则∠A余角的大小是(  ) A.57° B.67° C.77° D.157° 3.2022年,我国国内生产总值约为990870亿元,将数字990870用科学记数法表示为(  ) A.9.9087×105 B.9.9087×104 C.99.087×104 D.99.087×103 4.如图,是A市某一天的气温随时间变化的状况,则这天的日温差(最高气温与最低气温的差)是(  ) A.4℃ B.8℃ C.12℃ D.16℃ 5.计算:(x2y)3=(  ) A.﹣2x6y3 B.x6y3 C.x6y3 D.x5y4 6.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为(  ) A. B. C. D. 7.在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为(  ) A.2 B.3 C.4 D.6 8.如图,在▱ABCD中,AB=5,BC=8.E是边BC的中点,F是▱ABCD内一点,且∠BFC=90°.连接AF并延长,交CD于点G.若EF∥AB,则DG的长为(  ) A. B. C.3 D.2 9.如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为(  ) A.55° B.65° C.60° D.75° 10.在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在(  ) A.第一象限 B.其次象限 C.第三象限 D.第四象限 二、填空题(共4小题,每题3分,计12分) 11.计算:(2)(2)=   . 12.如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD,则∠BDM的度数是   . 13.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y(k≠0)的图象经过其中两点,则m的值为   . 14.如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD上,且AE=2.若直线l经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF的长为   . 三、解答题(共11小题,计78分.解允许写出过程) 15.(5分)解不等式组: 16.(5分)解分式方程:1. 17.(5分)如图,已知△ABC,AC>AB,∠C=45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保存作图痕迹.不写作法) 18.(5分)如图,在四边形ABCD中,AD∥BC,∠B=∠C.E是边BC上一点,且DE=DC.求证:AD=BE. 19.(7分)王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的用心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如下图:(1)这20条鱼质量的中位数是   ,众数是   . (2)求这20条鱼质量的平均数; (3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元? 20.(7分)如下图,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高MN.他俩在小明家的窗台B处,测得商业大厦顶部N的仰角∠1的度数,由于楼下植物的遮挡,不能在B处测得商业大厦底部M的俯角的度数.于是,他俩上楼来到小华家,在窗台C处测得大厦底部M的俯角∠2的度数,竟然发觉∠1与∠2恰好相等.已知A,B,C三点共线,CA⊥AM,NM⊥AM,AB=31m,BC=18m,试求商业大厦的高MN. 21.(7分)某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究说明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如下图. (1)求y与x之间的函数关系式; (2)当这种瓜苗长到大约80cm时,开头开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开头开花结果? 22.(7分)小亮和小丽举行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都一致.试验规矩:先将布袋内的小球摇匀,再从中随机摸出一个小球,记录下来颜色后放回,称为摸球一次. (1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率; (2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率. 23.(8分)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E. (1)求证:AD∥EC; (2)若AB=12,求线段EC的长. 24.(10分)如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l. (1)求该抛物线的表达式; (2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满意条件的点P,点E的坐标. 25.(12分)问题提出 (1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是   . 问题探究 (2)如图2,AB是半圆O的直径,AB=8.P是上一点,且2,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长. 问题解决 (3)如图3,是某公园内“少儿活动中心〞的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,重足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2). ①求y与x之间的函数关系式; ②依照“少儿活动中心〞的设计要求,发觉当AP的长度为30m时,整体布局对比合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积. 2022年陕西省中考数学试卷答案解析 一、选择题(共10小题,每题3分,计30分.每题只有一个选项是符合题意的) 1.﹣18的相反数是(  ) A.18 B.﹣18 C. D. 【解答】解:﹣18的相反数是:18. 应选:A. 2.若∠A=23°,则∠A余角的大小是(  ) A.57° B.67° C.77° D.157° 【解答】解:∵∠A=23°, ∴∠A的余角是90°﹣23°=67°. 应选:B. 3.2022年,我国国内生产总值约为990870亿元,将数字990870用科学记数法表示为(  ) A.9.9087×105 B.9.9087×104 C.99.087×104 D.99.087×103 【解答】解:990870=9.9087×105, 应选:A. 4.如图,是A市某一天的气温随时间变化的状况,则这天的日温差(最高气温与最低气温的差)是(  ) A.4℃ B.8℃ C.12℃ D.16℃ 【解答】解:从折线统计图中可以看出,这一天中最高气温8℃,最低气温是﹣4℃,这一天中最高气温与最低气温的差为12℃, 应选:C. 5.计算:(x2y)3=(  ) A.﹣2x6y3 B.x6y3 C.x6y3 D.x5y4 【解答】解:(x2y)3. 应选:C. 6.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为(  ) A. B. C. D. 【解答】解:由勾股定理得:AC, ∵S△ABC=3×33.5, ∴, ∴, ∴BD, 应选:D. 7.在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为(  ) A.2 B.3 C.4 D.6 【解答】解:在y=x+3中,令y=0,得x=﹣3, 解得,, ∴A(﹣3,0),B(﹣1,2), ∴△AOB的面积3×2=3, 应选:B. 8.如图,在▱ABCD中,AB=5,BC=8.E是边BC的中点,F是▱ABCD内一点,且∠BFC=90°.连接AF并延长,交CD于点G.若EF∥AB,则DG的长为(  ) A. B. C.3 D.2 【解答】解:∵E是边BC的中点,且∠BFC=90°, ∴Rt△BCF中,EFBC=4, ∵EF∥AB,AB∥CG,E是边BC的中点, ∴F是AG的中点, ∴EF是梯形ABCG的中位线, ∴CG=2EF﹣AB=3, 又∵CD=AB=5, ∴DG=5﹣3=2, 应选:D. 9.如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为(  ) A.55° B.65° C.60° D.75° 【解答】解:连接CD, ∵∠A=50°, ∴∠CDB=180°﹣∠A=130°, ∵E是边BC的中点, ∴OD⊥BC, ∴BD=CD, ∴∠ODB=∠ODCBDC=65°, 应选:B. 10.在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在(  ) A.第一象限 B.其次象限 C.第三象限 D.第四象限 【解答】解:∵y=x2﹣(m﹣1)x+m=(x)2+m, ∴该抛物线顶点坐标是(,m), ∴将其沿y轴向下平移3个单位后得到的抛物线的顶点坐标是(,m3), ∵m>1, ∴m﹣1>0, ∴0, ∵m31<0, ∴点(,m3)在第四象限; 应选:D. 二、填空题(共4小题,每题3分,计12分) 11.计算:(2)(2)= 1 . 【解答】解:原式=22﹣()2 =4﹣3 =1. 12.如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD,则∠BDM的度数是 144° . 【解答】解:由于五边形ABCDE是正五边形, 所以∠C108°,BC=DC, 所以∠BDC36°, 所以∠BDM=180°﹣36°=144°, 故答案为:144°. 13.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y(k≠0)的图象经过其中两点,则m的值为 ﹣1 . 【解答】解:∵点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限,点A(﹣2,1)在其次象限, ∴点C(﹣6,m)一定在第三象限, ∵B(3,2)在第一象限,反比例函数y(k≠0)的图象经过其中两点, ∴反比例函数y(k≠0)的图象经过B(3,2),C(﹣6,m), ∴3×2=﹣6m, ∴m=﹣1, 故答案为:﹣1. 14.如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD上,且AE=2.若直线l经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF的长为 2 . 【解答】解:如图,过点A和点E作AG⊥BC,EH⊥BC于点G和H, 得矩形AGHE, ∴GH=AE=2, ∵在菱形ABCD中,AB。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.