
牛顿环法测曲率半径.doc
7页word牛顿环法测曲率半径2014年11月28日牛顿环法测曲率半径 光的干预现象明确了光的波动的性质,干预现象在科学研究与计量技术中有着广泛的应用在干预现象中,不论何种干预,相邻干预条纹的光程差的改变都等于相干光的波长,可见光的波长虽然很小,但干预条纹间的距离或干预条纹的数目是可以计量的因此,通过对干预条纹数目或条纹移动数目的计量,可以得到以光的波长为单位的光程差 利用光的等厚干预可以测量光的波长,检验外表的平面度,球面度,光洁度,以与准确测量长度,角度和微小形变等 图1 本实验的主要容为利用干射法测量平凸透镜的曲率半径 1. 观察牛顿环 将牛顿环按图2所示放置在读数显微镜镜筒和入射光调节架下方,调节玻璃片的角度,使通过显微镜目镜观察时视场最亮 调节目镜,看清目镜视场的十字叉丝后,使显微镜镜筒下降到接近牛顿环仪然后缓慢上升,直到观察到干预条纹,再微调玻璃片角度和显微镜,使条纹清晰 2. 测牛顿环半径 使显微镜十字叉丝交点和牛顿环中心重合,并使水平方向的叉丝和标尺平行〔〕与显微镜移动方向平行〕记录标尺读数 转动显微镜微调鼓轮,使显微镜沿一个方向移动,同时数出十字叉丝竖丝移过的暗环数,直到竖丝与第N环相切为止〔N根据实验要求决定〕。
记录标尺读数 3. 重复步骤2测得一组牛顿环半径值,利用逐差法处理得到的数据,得到牛顿环半径R和R的标准差二.实验原理 图1 如下列图,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜分别从膜的上下外表反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上外表相遇而产生干预,干预后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差△′ 等于膜厚度e的两倍,即△′ =2e 此外,当光在空气膜的上外表反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下外表反射时,如此会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差p ,与之对应的光程差为 l /2 ,所以相干的两条光线还具有 l /2的附加光程差,总的光程差为〔1〕当△满足条件 ,〔k=1,2,3…〕〔2〕时,发生相长干预,出现第K级亮纹,而当〔3〕时,发生相消干预,出现第k级暗纹因为同一级条纹对应着一样的膜厚,所以干预条纹是一组等厚度线可以想见,干预条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。
如下列图,设第k级条纹的半径为rk,对应的膜厚度为ek ,如此〔4〕在实验中,R的大小为几米到十几米,而 ek 的数量级为毫米,所以R >> ek ,ek2相对于2Rk是一个小量,可以忽略,所以上式可以简化为〔5〕如果rk是第k级暗条纹的半径,由式〔1〕和〔3〕可得〔6〕代入式〔5〕得透镜曲率半径的计算公式〔7〕对给定的装置,R为常数,暗纹半径〔8〕和级数k的平方根成正比,即随着k的增大,条纹越来越细 同理,如果rk是第k级明纹,如此由式〔1〕和〔2〕得〔9〕代入式〔5〕,可以算出〔10〕由式〔8〕和〔10〕可见,只要测出暗纹半径〔或明纹半径〕,数出对应的级数k,即可算出R在实验中,暗纹位置更容易确定,所以我们选用式〔8〕来进展计算 在实际问题中,由于玻璃的弹性形变与接触处不干净等因素,透镜和玻璃板之间不可能是一个理想的点接触这样一来,干预环的圆心就很难确定,rk就很难测准,而且在接触处,到底包含了几级条纹也难以知道,这样级数k也无法确定,所以公式〔8〕不能直接用于实验测量在实验中,我们选择两个离中心较远的暗环,假定他们的级数为m和n,测出它们的直径dm = 2rm,dn = 2rn,如此由式〔8〕有由此得出〔11〕 从这个公式可以看出,只要我们准确地测出某两条暗纹的直径,准确地数出级数m和n之差〔m-n〕〔不必确定圆心也不必确定具体级数m和n〕,即可求得曲率半径R。
三.实验仪器————波长在5893A附近,具有光强,色纯的特点,使用时应注意: 〔1〕燃、灭一次对灯的寿命很有影响,故不得随便开,关 〔2〕点燃时,不得受撞击或震动,以免损坏灯管 3.入射光调节架——架上嵌有一个可以转动的玻璃片,玻璃片调到大约时,可使平行光垂直射到牛顿环玻璃外表 4.牛顿环仪——由一块待测曲率半径的平凸透镜,以其凸面放在一块光学平板玻璃上构成,外由一金属圆框固定四.实验步骤1.如下列图,摆放所需仪器仿真实验中仪器已摆放到位,只需要您将牛顿环仪摆放到显微镜下即可2.打开钠光灯点击钠光灯在开、关状态间切换3.调节45°玻璃片,使钠光灯射出的光线大体垂直入射到牛顿环装置上先点击区域打开目境观察窗口,这时候窗口显示是昏暗模糊的用鼠标点区域的入射光调节架,按住鼠标左键不放,调节架作顺时针旋转〔从观察者角度〕,点右键如此作相反动作如下列图,目镜观察窗中的条纹最明亮〔未必清晰〕时完毕调整 4.调节牛顿环仪周围的三个螺丝,使在牛顿环中心出现一组同心干预环5.调节读数显微镜:先调节目镜到清楚看到叉丝,再调节显微镜的筒身,为防止损坏目镜,先让物镜靠近牛顿装置的上外表,然后用眼睛看着显微镜,同时由下向上调节筒身,直至在显微镜能看到清晰的干预条纹的像,再进展消视差调节:两眼前后左右移动,叉丝和干预条纹之间无相对移动,如果干预环的亮度不够,可以略微调节45°玻璃板,以便获得最大的照度。
6.移动牛顿环装置,使干预条纹的中央暗区在显微镜叉丝的正下方;首先用鼠标双击图示区域1的牛顿环,打开载物台窗口在载物台窗口中您可以用鼠标拖住牛顿环在平面小围移动,主要是作上下方向的调整,当目镜观察窗中的横向叉丝经过牛顿环圆心时〔纵向叉丝与牛顿环相切〕,可以完毕操作当然,这一步可以和下一步〔横向调整〕交替进展 这一步作的是横向调整:先用鼠标双击图示区域1的横向调整手轮,打开标尺窗口用鼠标点击标尺窗口右侧的区域2所示局部可以调整镜身的横向移动, 左键点击时镜身向左移动〔所以目镜观察窗口中牛顿环向右移〕,右键如此相反当配合上一步操作将牛顿环中心移到目镜观察窗口中的叉丝交叉点时, 调整完毕〔不要关闭标尺窗口〕此时记下标尺的读数7.在式〔11〕中,R为待测半径,l为光波的波长,均为常量,如果取m-n为一确定值〔例如定为m - n = 25〕,如此dm2 - dn2也为一常数,就是说,但凡级数相隔25的两环〔例如第50环和第25环,第49环和第24环……〕,它们的直径的平方差应该不变据此,为了测量方便和提高测量准确度,可以相继测出各环的直径,再用逐差法来处理数据本实验要求测出10个dm2 - dn2的值,取其平均值,再计算出R。
仿真实验过横向调整手轮〔标尺窗口中〕来将叉丝交叉点定位到第N环〔移动时要注意数着〕,在纵向叉丝和第N环相切时,记下标尺的读数这和上一步的读数之差就是dN五.实验数据与数据处理 / 。












