
变磁阻式传感器差动变压器式传感器电涡流式传.ppt
71页第4章 电感式传感器4.1 变磁阻式传感器4.2 差动变压器式传感器4.3 电涡流式传感器 第4章 电感式传感器返回主目录第4章 电感式传感器第 4 章 电 感 式 传 感 器利用电磁感应原理将被测非电量如位移、压力、流量、 振动等转换成线圈自感量L或互感量M的变化, 再由测量电路转换为电压或电流的变化量输出, 这种装置称为电感式传感器 电感式传感器具有结构简单, 工作可靠, 测量精度高, 零点稳定, 输出功率较大等一系列优点, 其主要缺点是灵敏度、线性度和测量范围相互制约, 传感器自身频率响应低, 不适用于快速动态测量这种传感器能实现信息的远距离传输、记录、显示 和控制, 在工业自动控制系统中被广泛采用 电感式传感器种类很多, 本章主要介绍自感式、 互感式和电涡流式三种传感器 第4章 电感式传感器4.1 变磁阻式传感器一、 工作原理变磁阻式传感器的结构如图 4 - 1 所示它由线圈、铁芯和衔铁三部分组成铁芯和衔铁由导磁材料如硅钢片或坡莫合金 制成, 在铁芯和衔铁之间有气隙, 气隙厚度为δ, 传感器的运动部 分与衔铁相连当衔铁移动时, 气隙厚度δ发生改变, 引起磁路 中磁阻变化, 从而导致电感线圈的电感值变化, 因此只要能测出 这种电感量的变化, 就能确定衔铁位移量的大小和方向。
根据电感定义, 线圈中电感量可由下式确定:第4章 电感式传感器第4章 电感式传感器L= (4 - 1)式中: ——线圈总磁链; I ——通过线圈的电流; w——线圈的匝数; Φ ——穿过线圈的磁通由磁路欧姆定律, 得第4章 电感式传感器式中: Rm——磁路总磁阻对于变隙式传感器, 因为气隙 很小, 所以可以认为气隙中的磁场是均匀的若忽略磁路磁损, 则磁路总磁阻为 Rm = (4 - 3)式中: μ1——铁芯材料的导磁率; μ2——衔铁材料的导磁率; L1——磁通通过铁芯的长度; L2——磁通通过衔铁的长度; S1——铁芯的截面积; S2——衔铁的截面积; μ0——空气的导磁率; 第4章 电感式传感器S0——气隙的截面积; δ——气隙的厚度通常气隙磁阻远大于铁芯和衔铁的磁阻, 即则式(4 - 3)可近似为 Rm =联立式(4 - 1)#, 式(4 - 2)及式(4 - 5), 可得 第4章 电感式传感器(4 - 6) 上式表明, 当线圈匝数为常数时, 电感L仅仅是磁路中磁 阻Rm的函数, 只要改变δ或S0均可导致电感变化, 因此变磁阻 式传感器又可分为变气隙厚度δ的传感器和变气隙面积S0的 传感器。
使用最广泛的是变气隙厚度δ式电感传感器 二、 输出特性设电感传感器初始气隙为δ 0, 初始电感量为L 0, 衔铁位 移引起的气隙变化量为Δδ, 从式(4 - 6)可知L与δ之间是非线 性关系, 特性曲线如图(4 -2)表示,初始电感量为第4章 电感式传感器第4章 电感式传感器当衔铁上移Δδ时, 传感器气隙减小Δδ, 即δ=δ0-Δδ, 则此时输 出电感为L = L0+ΔL, 代入式(4 - 6)式并整理, 得当Δδ/δ01时, 可将上式用台劳级数展开成级数形式为 L = L0+ΔL =由上式可求得电感增量ΔL和相对增量ΔL/ L0的表达式, 即 第4章 电感式传感器当衔铁上移Δδ时, 传感器气隙减小Δδ, 即δ=δ0-Δδ, 则此时输 出电感为L = L0+ΔL, 代入式(4 - 6)式并整理, 得第4章 电感式传感器对式(4 - 11)、 (4 - 13) 作线性处理,忽略高次项, 可得灵敏度为 (4 - 15) 由此可见, 变间隙式电感传感器的测量范围与灵敏度及线 性度相矛盾, 所以变隙式电感式传感器用于测量微小位移时是 比较精确的。
为了减小非线性误差, 实际测量中广泛采用差动变隙式电感传感器 第4章 电感式传感器图 4 - 3 所示为差动变隙式电感传感器的原理结构图 由 图可知, 差动变隙式电感传感器由两个相同的电感线圈Ⅰ、Ⅱ 和磁路组成, 测量时, 衔铁通过导杆与被测位移量相连, 当被测 体上下移动时, 导杆带动衔铁也以相同的位移上下移动, 使两 个磁回路中磁阻发生大小相等#, 方向相反的变化, 导致一个线 圈的电感量增加, 另一个线圈的电感量减小, 形成差动形式 当衔铁往上移动Δδ时, 两个线圈的电感变化量ΔL1、ΔL2分别由 式(4 - 10)及式(4 - 12)表示, 当差动使用时, 两个电感线圈 接成交流电桥的相邻桥臂, 另两个桥臂由电阻组成, 电桥输出 电压与ΔL有关, 其具体表达式为 ΔL = ΔL1+ΔL2第4章 电感式传感器对上式进行线性处理,忽略高次项得灵敏度K0为 比较单线圈和差动两种变间隙式电感传感器的特性, 可以 得到如下结论: ① 差动式比单线圈式的灵敏度高一倍第4章 电感式传感器② 差动式的非线性项等于单线圈非线性项乘以(Δδ/δ0)因子, 因为(Δδ/δ0)1, 所以, 差动式的线性度得到明显改善。
为了使输出特性能得到有效改善, 构成差动的两个变隙式电感传感器在结构尺寸、 材料、电气参数等方面均应完全一致 三、 测量电路电感式传感器的测量电路有交流电桥式、 交流变压器式以及谐振式等几种形式 第4章 电感式传感器1. 交流电桥式测量电路图 4 - 4所示为交流电桥测量电路, 把传感器的两个线圈作 为电桥的两个桥臂Z1和Z2, 另外二个相邻的桥臂用纯电阻代替 , 对于高Q值(Q = ωL/R)的差动式电感传感器, 其输出电压式中: L0——衔铁在中间位置时单个线圈的电感; ΔL——单线圈电感的变化量将ΔL=L0(Δδ/δ0)代入式(4 - 19)得 (Δδ/δ0), 电桥输出 电压与Δδ有关 第4章 电感式传感器2. 变压器式交流电桥变压器式交流电桥测量电路如图 4 - 5所示, 电桥两臂Z1、 Z2为传感器线圈阻抗, 另外两桥臂为交流变压器次级线圈的 1/2 阻抗当负截阻抗为无穷大时, 桥路输出电压当传感器的衔铁处于中间位置, 即Z1= Z2=Z时有 =0, 电 桥平衡 当传感器衔铁上移时, 即Z1=Z+ΔZ, Z2=Z-ΔZ, 此时 第4章 电感式传感器第4章 电感式传感器当传感器衔铁下移时, 则Z1=Z-ΔZ, Z2=Z+ΔZ, 此时 从式(4 - 21)及式(4 - 22)可知, 衔铁上下移动相同距离时, 输出电压的大小相等, 但方向相反, 由于 是交流电压, 输出指示无法判断位移方向, 必须配合相敏检波电路来解决。
3. 谐振式测量电路谐振式测量电路有谐振式调幅电路如图 4 - 6 所示, 谐振式调频电路如图 4 - 7 所示 第4章 电感式传感器第4章 电感式传感器在调幅电路中, 传感器电感L与电容C#, 变压器原边串联 在一起, 接入交流电源, 变压器副边将有电压 输出, 输出电 压的频率与电源频率相同, 而幅值随着电感L而变化, 图 4 - 6 (b)所示为输出电压 与电感L的关系曲线, 其中L0为谐振 点的电感值,此电路灵敏度很高, 但线性差, 适用于线性要求不高的场合 调频电路的基本原理是传感器电感L变化将引起输出电 压频率的变化一般是把传感器电感L和电容C接入一个振荡 回路中, 其振荡频率f=1/[2π(LC)1/2] 当L变化时, 振荡 频率随之变化, 根据f的大小即可测出被测量的值图 4 - (b )表示f与L的特性, 它具有明显的非线性关系 第4章 电感式传感器四、 变磁阻式传感器的应用图 4 - 8 所示是变隙电感式压力传感器的结构图 它由膜盒、 铁芯、 衔铁及线圈等组成, 衔铁与膜盒的上端连在一起当压力进入膜盒时, 膜盒的顶端在压力P的作用下产生与压力P大小成正比的位移。
于是衔铁也发生移动, 从而使气隙发生变化, 流过线圈的电流也发生相应的变化, 电流表指示值就反映了被测压力的大小图 4 - 9 所示为变隙式差动电感压力传感器它主要由C形弹簧管、衔铁、铁芯和线圈等组成 第4章 电感式传感器第4章 电感式传感器第4章 电感式传感器当被测压力进入C形弹簧管时, C形弹簧管产生变形, 其自由端发生位移, 带动与自由端连接成一体的衔铁运动, 使线圈 1 和线圈 2 中的电感发生大小相等、 符号相反的变化, 即一个电感量增大, 另一个电感量减小 电感的这种变化通过电桥电路转换成电压输出由于输出电压与被测压力之间成比例关系, 所以只要用检测仪表测量出输出电压, 即可得知被测压力的大小 第4章 电感式传感器4.2 差动变压器式传感器 把被测的非电量变化转换为线圈互感量变化的传感器称为互感式传感器这种传感器是根据变压器的基本原理制成的, 并且次级绕组都用差动形式连接, 故称差动变压器式传感器 差动变压器结构形式较多, 有变隙式、 变面积式和螺线管式等, 但其工作原理基本一样非电量测量中, 应用最多的是螺线管式差动变压器, 它可以测量1~100mm范围内的机械位移, 并具有测量精度高, 灵敏度高, 结构简单, 性能可靠等优点。
第4章 电感式传感器差动变压器结构形式较多, 有变隙式、变面积式和螺线管 式等, 但其工作原理基本一样非电量测量中, 应用最多的是 螺线管式差动变压器, 它可以测量1~100mm范围内的机械位 移, 并具有测量精度高, 灵敏度高, 结构简单, 性能可靠等优点 一、 工作原理螺线管式差动变压器结构如图 4 -10 所示, 它由初级线圈 #, 两个次级线圈和插入线圈中央的圆柱形铁芯等组成 螺线管式差动变压器按线圈绕组排列的方式不同可分为一 节、二节、三节、四节和五节式等类型, 如图 4 - 11 所示 一 节式灵敏度高, 三节式零点残余电压较小, 通常采用的是二节式和三节式两类 第4章 电感式传感器第4章 电感式传感器第4章 电感式传感器差动变压器式传感器中两个次级线圈反向串联, 并且在忽略铁损、 导磁体磁阻和线圈分布电容的理想条件下, 其等效电路如图 4 - 12所示当初级绕组w1加以激励电压 时, 根据变压器的工作原理, 在两个次级绕组w2a和w2b中便会产生感应电势 和 如果工艺上保证变压器结构完全对称,则当活动衔铁处于初始平衡位置时, 必然会使两互感系数M1=M2。
根据电磁感应原理, 将有 由于变压器两次级绕组反向串联, 因而 , 即差动变压器输出电压为零 第4章 电感式传感器第4章 电感式传感器活动衔铁向上移动时,由于磁阻的影响, w2a中磁通将大于w2b, 使M1M2, 因而 增加, 而 减小 反之, 增加, 减小因为 , 所以当 、 随着衔铁位移x变化时, 也必将随x变化 图 4 - 13 给出了变压器输出电压 与活动衔铁位移x的关系曲线实际上, 当衔铁位于中心位置时, 差动变压器输出电压并不等于零, 我们把差动变压器在零位移时的输出电压称为零点残余电压,记作 , 它的存在使传感器的输出特性不过零点,造成实际特性与理论特性不完全一致 第4章 电感式传感器第4章 电感式传感器零点残余电压主要是由传感器的两次级绕组的电气参数与几何尺寸不对称,以及磁性材料的非线性等问题引起的 零点残余电压的波形十分复杂,主要由基波和高次谐波组成基波产生的主要原因是:传感器的两次级绕组的电气参数和几何尺寸不对称,导致它们产生的感应电势的幅值不等、相位不同,因此不论怎样调整衔铁位置, 两线圈中感应电。












