
2024年陕西省咸阳市秦岭中学八年级下册数学期末质量跟踪监视试题含解析.doc
22页2024年陕西省咸阳市秦岭中学八年级下册数学期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回一、选择题(每题4分,共48分)1.顺次连接菱形各边中点所形成的四边形是( )A.平行四边形 B.菱形 C.矩形 D.正方形2.15名同学参加八年级数学竞赛初赛,他们的得分互不相同,按从高分到低分的原则,录取前8名同学参加复赛,现在小聪同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的( )A.平均数 B.中位数 C.众数 D.方差3.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=1DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=1.其中正确结论的个数是( )A.1 B.2 C.1 D.44.如图,点是线段的中点,分别以为边作等腰和等腰,,连接,且相交于点,交于点,则下列说法中,不正确的是( )A.是的中线 B.四边形是平行四边形C. D.平分5.设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是( )A.a>b B.a=b C.a
3)如图,点在函数的图象上, ,在轴上,在函数的图象上 ,以,,,四个点为顶点,且以为一边构成平行四边形,直接写出所有满足条件的点坐标参考答案一、选择题(每题4分,共48分)1、C【解析】根据题意作图,利用菱形与中位线的性质即可求解.【详解】如图,E、F、G、H是菱形ABCD各边的中点,连接EF、FG、GH、EH,判断四边形EFGH的形状,∵E,F是中点,∴EF是△ABC的中位线,∴EH∥BD,同理,EF∥AC,GH∥AC,FG∥BD,∴EH∥FG,EF∥GH,则四边形EFGH是平行四边形,又∵AC⊥BD,∴EF⊥EH,即∠FEH=90°∴平行四边形EFGH是矩形,故答案为:C.【点睛】此题主要考查中点四边形的判定,解题的关键是熟知菱形的性质以及矩形的判定.2、B【解析】由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于15个人中,第8名的成绩是中位数,故小明同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数.故选B.【点睛】本题考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.3、C【解析】根据正方形基本性质和相似三角形性质进行分析即可.【详解】①正确.因为AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴△ABG≌△AFG;②正确.因为:EF=DE=CD=2,设BG=FG=x,则CG=6﹣x.在直角△ECG中,根据勾股定理,得(6﹣x)2+42=(x+2)2,解得x=1.所以BG=1=6﹣1=GC;③正确.因为CG=BG=GF,所以△FGC是等腰三角形,∠GFC=∠GCF.又∠AGB=∠AGF,∠AGB+∠AGF=180°﹣∠FGC=∠GFC+∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④错误.过F作FH⊥DC,∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴EF=DE=2,GF=1,∴EG=5,∴∴S△FGC=S△GCE﹣S△FEC=故选C.【点睛】考核知识点:相似三角形性质.4、D【解析】根据平行四边形、全等三角形的判定与性质以及等腰三角形三线合一的性质,逐一判定即可.【详解】∵点是线段的中点,∴BC=EC∵等腰和等腰,,∴AB=AC=CD=DE,∠ABC=∠ACB=∠DCE=∠DEC=45°∴∠ACD=90°,AD=BC=EC∴∠CAD=∠CDA=45°∴AD∥BE∴四边形是平行四边形,故B选项正确;在△ABE和△DEB中,∴△ABE≌△DEB(SAS)∴,故C选项正确;∴∠DBE=∠AEB∴FC⊥BE∵AD∥BE∴FC⊥AD∴是的中线,故A选项正确;∵AC≠CE∴不可能平分,故D选项错误;故选:D.【点睛】此题主要考查平行四边形、全等三角形的判定与性质以及等腰三角形的性质,熟练掌握,即可解题.5、B【解析】根据多边形的内角和定理与多边形外角的关系即可得出结论.【详解】解:∵四边形的内角和等于a,∴a=(4﹣2)•180°=360°.∵五边形的外角和等于b,∴b=360°,∴a=b.故选B.6、D【解析】过F作AB、CD的平行线FG,由于F是AD的中点,那么G是BC的中点,即Rt△BCE斜边上的中点,由此可得BC=2EG=2FG,即△GEF、△BEG都是等腰三角形,因此求∠B的度数,只需求得∠BEG的度数即可;易知四边形ABGF是平行四边形,得∠EFG=∠AEF,由此可求得∠FEG的度数,即可得到∠AEG的度数,根据邻补角的定义可得∠BEG的值,由此得解.【详解】过F作FG∥AB∥CD,交BC于G;则四边形ABGF是平行四边形,所以AF=BG,即G是BC的中点;连接EG,在Rt△BEC中,EG是斜边上的中线,则BG=GE=FG=BC;∵AE∥FG,∴∠EFG=∠AEF=∠FEG=54°,∴∠AEG=∠AEF+∠FEG=108°,∴∠B=∠BEG=180°-108°=72°.故选D.【点睛】此题主要考查了平行四边形的性质、直角三角形的性质以及等腰三角形的判定和性质,正确地构造出与所求相关的等腰三角形是解决问题的关键.7、C【解析】由作法可知,MN为垂直平分线,DC=CD,由等腰三角形性质可知∠BCD=∠B=30°,再由三角形。
