好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

第四讲转化与化归思想.doc

7页
  • 卖家[上传人]:cn****1
  • 文档编号:559554527
  • 上传时间:2022-11-14
  • 文档格式:DOC
  • 文档大小:178KB
  • / 7 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 第四讲 转化与化归思想1.转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种数学方法.一般是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.2.转化与化归思想是实现具有相互关联的两个知识板块进行相互转化的重要依据,如函数与不等式、函数与方程、数与形、式与数、角与边、空间与平面、实际问题与数学问题的互化等,消去法、换元法、数形结合法等都体现了等价转化思想,我们也经常在函数、方程、不等式之间进行等价转化,在复习过程中应注意相近主干知识之间的互化,注重知识的综合性.3.转化与化归思想的原则(1)熟悉已知化原则:将陌生的问题转化为熟悉的问题,将未知的问题转化为已知的问题,以便于我们运用熟知的知识、经验和问题来解决.(2)简单化原则:将复杂问题转化为简单问题,如三维空间问题转化为二维平面问题,通过简单问题的解决思路和方法,获得对复杂问题的解答启示和思路以达到解决复杂问题的目的.(3)具体化原则:化归方向应由抽象到具体.(4)和谐统一原则:转化问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐统一的形式;或者转化命题,使其推演有利于运用某种数学方法或符合人们的思维规律.(5)正难则反原则:当问题正面讨论遇到困难时,应想到问题的反面;或问题的正面较复杂时,其反面一般是简单的;设法从问题的反面去探求,使问题获得解决.1.已知{an}为等差数列,Sn为其前n项和.若a1=,S2=a3,则a2=________.2. 4cos 50°-tan 40°等于 3. 已知a=log23+log2,b=log29-log2,c=log32,则a,b,c的大小关系是 4. (2011·天津)对实数a和b,定义运算“⊗”:a⊗b=设函数f(x)=(x2-2)⊗(x-1),x∈R.若函数y=f(x)-c的图象与x轴恰有两个公共点,则实数c的取值范围是 5.设正实数x,y,z满足x2-3xy+4y2-z=0,则当取得最大值时,+-的最大值为 题型一 特殊与一般的转化例1 (1),,(其中e为自然常数)的大小关系是 (2)在定圆C:x2+y2=4内过点P(-1,1)作两条互相垂直的直线与C分别交于A,B和M,N,则+的范围是________.审题破题 (1)观察几个数的共同特征,可以构造函数,利用函数的单调性比较数的大小;(2)由于题目条件中过点P(-1,1)可作无数对互相垂直的直线,因此可取特殊位置的两条直线来解决问题.答案 (1)A (2)解析 (1)由于=,=,=,故可构造函数f(x)=,于是f(4)=,f(5)=,f(6)=.而f′(x)=′==,令f′(x)>0得x<0或x>2,即函数f(x)在(2,+∞)上单调递增,因此有f(4)<f(5)<f(6),即<<.(2)设=t,考虑特殊情况:当AB垂直OP时,MN过点O,|AB|最小,|MN|最大,所以t最小=,t最大=.所以t∈.又因为t+≥2 =2,所以t+∈.反思归纳 当问题难以入手时,应先对特殊情况或简单情形进行观察、分析,发现问题中特殊的数量或关系结构或部分元素,然后推广到一般情形,以完成从特殊情形的研究到一般问题的解答的过渡,这就是特殊化的化归策略.数学题目有的具有一般性,有的具有特殊性,解题时,有时需要把一般问题化归为特殊问题,有时需要把特殊问题化归为一般问题.变式训练1 已知等差数列{an}的公差d≠0,且a1、a3、a9成等比数列,则的值是________.答案 解析 由题意知,只要满足a1、a3、a9成等比数列的条件,{an}取何种等差数列与所求代数式的值是没有关系的.因此,可把抽象数列化归为具体数列.比如,可选取数列an=n(n∈N*),则==.题型二 正难则反转化例2 若对于任意t∈[1,2],函数g(x)=x3+x2-2x在区间(t,3)上总不为单调函数,则实数m的取值范围是__________.审题破题 函数总不为单调函数不易求解,可考虑其反面情况:g(x)在区间(t,3)上为单调函数.答案 -0,若2m=-m-3,即m=-1,此时f(x)<0的解集为{x|x≠-2},满足题意;若2m>-m-3,即-12m或x<-m-3},依题意2m<1,即-1-m-3},依题意-m-3<1,∴m>-4,∴-41.(1)讨论f(x)的单调性;(2)若当x≥0时,f(x)>0恒成立,求a的取值范围.审题破题 (1)求f′(x)=0的根,比较两根的大小、确定区间,讨论f(x)的单调性;(2)将f(x)>0恒成立转化为f(x)的最小值大于0.解 (1)f′(x)=x2-2(1+a)x+4a=(x-2)(x-2a).由已知a>1,∴2a>2,∴令f′(x)>0,解得x>2a或x<2,∴当x∈(-∞,2)和x∈(2a,+∞)时,f(x)单调递增,当x∈(2,2a)时,f(x)单调递减.综上,当a>1时,f(x)在区间(-∞,2)和(2a,+∞)上是增函数,在区间(2,2a)上是减函数.(2)由(1)知,当x≥0时,f(x)在x=2a或x=0处取得最小值.f(2a)=(2a)3-(1+a)(2a)2+4a·2a+24a=-a3+4a2+24a=-a(a-6)(a+3),f(0)=24a.由题设知即解得1ln(n+1)(n∈N*).(1)解 ∵g(x)=f(x)-(x+1)=ln x-(x+1),∴g′(x)=-1(x>0).令g′(x)>0,解得01.∴函数g(x)在(0,1)上单调递增,在(1,+∞)上单调递减,∴g(x)极大值=g(1)=-2.(2)证明 由(1)知x=1是函数g(x)的极大值点,也是最大值点,∴g(x)≤g(1)=-2,即ln x-(x+1)≤-2⇒ln x≤x-1(当且仅当x=1时等号成立),令t=x-1,得t≥ln(t+1),取t=(n∈N*),则>ln=ln,∴1>ln 2,>ln ,>ln ,…,>ln,叠加得1+++…+>ln(2···…·)=ln(n+1). 典例 (12分)已知函数f(x)=x3+x2+x(a是小于1的正实数,x∈R).若对于任意的三个实数x1,x2,x3∈[1,2],都有f(x1)+f(x2)>f(x3)恒成立,求实数a的取值范围.规范解答解 因为f′(x)=x2+x+=(x+a-2),所以令f′(x)=0,解得x1=,x2=2-a. [2分]由00,得x<,或x>2-a;令f′(x)<0,得-,由对任意x1,x2,x3∈[1,2],都有f(x1)+f(x2)>f(x3)恒成立,得2[f(x)]min>[f(x)]max(x∈[1,2]).[7分]所以当0-,结合0a,结合0的最小正整数n为 3. AB是过抛物线x2=4y的焦点的动弦,直线l1,l2是抛物线两条分别切于A,B的切线,则l1,l2的交点的纵坐标为 4. 若正数x,。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.