
数学实验课后习题解答.doc
75页数学实验课后习题解答配套教材:王向东 戎海武 文翰 编著数学实验王汝军编写实验一 曲线绘图 【【练习与思考练习与思考】】 画出下列常见曲线的图形 以直角坐标方程表示的曲线: 1. 立方曲线3xy clear; x=-2:0.1:2; y=x.^3; plot(x,y) -2-1.5-1-0.500.511.52-8-6-4-2024682. 立方抛物线3xy clear; y=-2:0.1:2; x=y.^3; plot(x,y) grid on -8-6-4-202468-2-1.5-1-0.500.511.523. 高斯曲线2xeyclear; x=-3:0.1:3; y=exp(-x.^2); plot(x,y); grid on %axis equal -3-2-1012300.10.20.30.40.50.60.70.80.91以参数方程表示的曲线4. 奈尔抛物线)(,32 23xytytxclear; t=-3:0.05:3; x=t.^3;y=t.^2; plot(x,y) axis equal grid on -25-20-15-10-50510152025-15-10-505101520255. 半立方抛物线2323,()xtytyx clear; t=-3:0.05:3; x=t.^2;y=t.^3; plot(x,y) %axis equal grid on 0123456789-30-20-1001020306. 迪卡尔曲线2 33 2233,(30)11atatxyxyaxytt clear; a=3;t=-6:0.1:6; x=3*a*t./(1+t.^2); y=3*a*t.^2./(1+t.^2); plot(x,y) -5-4-3-2-101234501234567897. 蔓叶线233 2 22,()11atatxxyyttax clear; a=3;t=-6:0.1:6; x=3*a*t.^2./(1+t.^2); y=3*a*t.^3./(1+t.^2); plot(x,y) 0123456789-60-40-2002040608. 摆线)cos1 (),sin(tbyttax clear;clc; a=1;b=1; t=0:pi/50:6*pi; x=a*(t-sin(t)); y=b*(1-cos(t)); plot(x,y); axis equal grid on 024681012141618-6-4-2024689. 内摆线(星形线))(sin,cos32 32 32 33ayxtaytax clear; a=1; t=0:pi/50:2*pi; x=a*cos(t).^3; y=a*sin(t).^3; plot(x,y) -1-0.8-0.6-0.4-0.200.20.40.60.81-1-0.8-0.6-0.4-0.200.20.40.60.8110.圆的渐伸线(渐开线))cos(sin),sin(costttaytttax clear; a=1; t=0:pi/50:6*pi; x=a*(cos(t)+t.*sin(t)); y=a*(sin(t)+t.*cos(t)); plot(x,y) grid on -20-15-10-5051015-20-15-10-50510152011.空间螺线ctztbytax,sin,cos clear a=3;b=2;c=1; t=0:pi/50:6*pi; x=a*cos(t); y=b*sin(t); z=c*t; plot3(x,y,z) grid on -4-2024-2-101205101520以极坐标方程表示的曲线: 12.阿基米德线0,rar clear; a=1; phy=0:pi/50:6*pi; rho=a*phy; polar(phy,rho,'r-*') 5101520302106024090270120300150330180013.对数螺线aer clear; a=0.1; phy=0:pi/50:6*pi; rho=exp(a*phy); polar(phy,rho) 2468302106024090270120300150330180014.双纽线))()((2cos22222222yxayxar clear; a=1; phy=-pi/4:pi/50:pi/4; rho=a*sqrt(cos(2*phy)); polar(phy,rho) hold on polar(phy,-rho) 0.20.40.60.81302106024090270120300150330180015.双纽线)2)((2sin222222xyayxar clear; a=1; phy=0:pi/50:pi/2; rho=a*sqrt(sin(2*phy)); polar(phy,rho) hold on polar(phy,-rho) 0.20.40.60.81302106024090270120300150330180016.四叶玫瑰线0,2sinrar clear;close a=1; phy=0:pi/50:2*pi; rho=a*sin(2*phy); polar(phy,rho)0.20.40.60.81302106024090270120300150330180017.三叶玫瑰线0,3sinrar clear;close a=1; phy=0:pi/50:2*pi; rho=a*sin(3*phy); polar(phy,rho) 0.20.40.60.81302106024090270120300150330180018.三叶玫瑰线0,3cosrar clear;close a=1; phy=0:pi/50:2*pi; rho=a*cos(3*phy); polar(phy,rho) 0.20.40.60.813021060240902701203001503301800实验二 极限与导数 【【练习与思考练习与思考】】 1.求下列各极限(1) (2) (3)nnn)11 (lim nnnn3lim3 )122(limnnn n clear; syms n y1=limit((1-1/n)^n,n,inf) y2=limit((n^3+3^n)^(1/n),n,inf) y3=limit(sqrt(n+2)-2*sqrt(n+1)+sqrt(n),n,inf) y1 =1/exp(1) y2 =3 y3 =0 (4) (5) (6))11 12(lim21xxxxx x2cotlim 0)3(lim2xxx x clear; syms x ; y4=limit(2/(x^2-1)-1/(x-1),x,1) y5=limit(x*cot(2*x),x,0) y6=limit(sqrt(x^2+3*x)-x,x,inf) y4 =-1/2 y5 =1/2 y6 =3/2 (7) (8) (9)xxxm)(coslim )111(lim 1 xxexxxx11lim30 clear; syms x m y7=limit(cos(m/x),x,inf) y8=limit(1/x-1/(exp(x)-1),x,1) y9=limit(((1+x)^(1/3)-1)/x,x,0) y7 =1 y8 =(exp(1) - 2)/(exp(1) - 1) y9 =1/3 2.考虑函数 22),sin(3)(32xxxxf作出图形,并说出大致单调区间;使用 diff 求,并求确切的单调区间。
)( ' xf)(xf clear;close; syms x; f=3*x^2*sin(x^3); ezplot(f,[-2,2]) grid on 大致的单调增区间:[-2,-1.7],[-1.3,1.2],[1.7,2]; 大致的单点减区间:[-1.7,-1.3],[1.2,1.7];-2-1.5-1-0.500.511.52-10-50510x3 x2 sin(x3)f1=diff(f,x,1) ezplot(f1,[-2,2]) line([-5,5],[0,0])grid on axis([-2.1,2.1,-60,120])f1 = 6*x*sin(x^3) + 9*x^4*cos(x^3)-2-1.5-1-0.500.511.52-60-40-20020406080100120x6 x sin(x3) + 9 x4 cos(x3)用 fzero 函数找的零点,即原函数的驻点)( ' xf)(xf x1=fzero('6*x*sin(x^3) + 9*x^4*cos(x^3)',[-2,-1.7]) x2=fzero('6*x*sin(x^3) + 9*x^4*cos(x^3)',[-1.7,-1.5]) x3=fzero('6*x*sin(x^3) + 9*x^4*cos(x^3)',[-1.5,-1.1]) x4=fzero('6*x*sin(x^3) + 9*x^4*cos(x^3)',0) x5=fzero('6*x*sin(x^3) + 9*x^4*cos(x^3)',[1,1.5]) x6=fzero('6*x*sin(x^3) + 9*x^4*cos(x^3)',[1.5,1.7]) x7=fzero('6*x*sin(x^3) + 9*x^4*cos(x^3)',[1.7,2])x1 =-1.9948 x2 =-1.6926 x3 =-1.2401 x4 =0 x5 =1.2401 x6 =1.6926 x7 =1.9948 确切的单调增区间:[-1.9948,-1.6926],[-1.2401,1.2401],[1.6926,1.9948]确切的单调减区间:[-2,-1.9948],[-1.6926,-1.2401],[1.2401,1.6926],[1.9948,2] 3.对于下列函数完成下列工作,并写出总结报告,评论极值与导数的关系, (i) 作出图形,观测所有的局部极大、局部极小和全局最大、全局最小值点的粗略 位置; (iI) 求所有零点(即的驻点);)( ' xf)(xf(iii) 求出驻点处的二阶导数值;)(xf (iv) 用 fmin 求各极值点的确切位置; (v) 局部极值点与有何关系?)(“),( 'xfxf(1) ]2 , 2[),2sin()(22xxxxxf (2) ]3 , 3[,10203)(35xxxxf(3) ]3 , 0[,2)(23xxxxxfclear;close; syms x; f=x^2*sin(x^2-x-2) ezplot(f,[-2,2]) grid on f = x^2*sin(x^2 - x - 2)-2-1.5-1-0.500.511.52-3-2-1012xx2 sin(x2 - x - 2)局部极大值点为:-1.6,局部极小值点为为:-0.75,-1.6 全局最大值点为为:-1.6,全局最小值点为:-3 f1=diff(f,x,1) ezplot(f1,[-2,2]) line([-5,5],[0,0]) grid onaxis([-2.1,2.1,-6,20])f1 = 2*x*sin(x^2 - x - 2) + x^2*cos(x^2 - x - 2)*(2*x - 1)-2-1.5-1-0.500.511.52-505101520x2 x sin(x2 - x - 2) + x2 cos(x2 - x - 2) (2 x - 1)用 fzero 函数找的零点,即原函数的驻点)( ' xf)(xf x1=fzero('2*x*sin(x^2-x。