
《不等式与一次不等式组》全章复习与巩固(基础)知识讲解.doc
7页《不等式与一次不等式组》全章复习与巩固(基础)知识讲解【知识网络】【要点梳理】要点一、不等式1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.要点诠释:(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.解集的表示方法一般有两种:一种是用最简的不等式表示,例如,等;另一种是用数轴表示,如下图所示:(3)解不等式:求不等式的解集的过程叫做解不等式.2. 不等式的性质:不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或).要点二、一元一次不等式1. 定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式,要点诠释:ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式.2.解法:解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式;(5)解:解出所列的不等式的解集;(6)答:检验是否符合题意,写出答案.要点诠释:列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键.要点三、一元一次不等式组 关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.要点诠释:(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集.(2)解不等式组:求不等式组解集的过程,叫做解不等式组. (3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集. (4)一元一次不等式组的应用: ①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案.【典型例题】类型一、不等式 1.用适当的符号语言表达下列关系.。
1)a与5的和是正数. (2)b与-5的差不是正数.(3)x的2倍大于x. (4)2x与1的和小于零.(5)a的2倍与4的差不少于5.【答案与解析】解:(1)a+5>0;(2)b-(-5)≤0; (3)2x>x; (4)2x+1<0;(5)2a-4≥5. 【总结升华】正确运用不等符号翻译表述一些数学描述是学好不等式的关键,要关注一些常见的描述语言,如此处:不是、不少于、不大于……2.用适当的符号填空:(1)如果a
思路点拨】分别解出各不等式,取所有的公共部分答案与解析】解:由不等式①得≤2,由不等式②得,∴由①②得,即∴原不等式组的解集是,正整数解为1,2.【总结升华】求不等式(组)的特殊解的一般步骤是先求出不等式(组)的解集,再从中找出符合要求的特殊解.举一反三:【变式】解不等式组:,并把解集在数轴上表示出来.【答案】解:∵解不等式①得:x>﹣3,解不等式②得:x≤2,∴不等式组的解集为﹣3<x≤2,在数轴上表示不等式组的解集为:.类型四、综合应用6.若关于x,y的方程组的解满足,求k的整数值.【思路点拨】从概念出发,解出方程组(用k表示x、y),然后解不等式组.【答案与解析】解:解方程组∵,解得:, ∴整数k的值为0,1,2.【总结升华】方程组的未知数是x、y,k在方程组里看成常数.通过求解方程组可以用k表示x、y.方程组的解满足不等式,那么可以将x、y用含k的式子替换,得到关于k的不等式组,可以求出k的取值范围,进而可以求出k的整数值.【高清课堂:一元一次不等式章节复习 410551 例3(1)】举一反三:【变式】m为何值时,关于x的方程: 的解大于1?【答案】解:由,得,∴,解得.∴当时,关于x的方程: 的解大于1.7.某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.【思路点拨】(1)设单独租用35座客车需x辆.根据单独租用35座客车若干辆,则刚好坐满和单独租用55座客车,则可以少租一辆,且余45个空座位,分别表示出总人数,从而列方程求解;(2)设租35座客车y辆,则租55座客车(4-y)辆.根据不等关系:①两种车坐的总人数不小于175人;②租车资金不超过1500元.列不等式组分析求解.【答案与解析】解:(1)设单独租用35座客车需x辆,由题意得:,解得:.∴(人). 答:该校八年级参加社会实践活动的人数为175人. (2)设租35座客车y辆,则租55座客车()辆,由题意得: ,解这个不等式组,得.∵取正整数,∴= 2. ∴4- = 4-2 = 2(辆).∴320×2+400×2 = 1440(元).所以本次社会实践活动所需车辆的租金为1440元. 【总结升华】本题考查了一元一次方程的应用和一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.。
